

Describe the transformations of the Parent Function y=|x|this equation represents:

y = -6|x + 7| - 10

- · lo times as tall
- ·7 units left
- · 10 units down · Opens down

Write the equation of the parent function y=|x| after the following transformations:

- Vertical shrink to one-fourth the height $\sqrt{\frac{1}{4}} = \frac{1}{4} \times \frac{1}{4}$

• Opens Up.

Graph
$$y = -3|x-1| + 4$$

This equation tells us that the graph has

moved 1 unit right Vertex is (1,4) Wertex is (1,4) Opens DownCoefficient is Negative Sides have a slope of ±3

Vertical Stretch Factor of 3

2. Graph y =4 2|x + 1| - 2 = 4

1. Graph y = 2|x + 1| - 2

3. What part of this graph shows the solution to this equation:

where the graphs Intersect

Therefore, the solutions are the x-coordinates of the points of intersection.

Solutions:
$$X = -4, 2$$

Step #1 EVERY TIME: Isolate the absoltue value on one side of the equation

Solve Algebraically: 2|x + 1| - 2 = 4

$$2|x + 1| - 2 = 4$$

+2 +2
$$\frac{2|x+1| - 6}{2}$$

|x+1| = 3

Solve Algebraically:	2 x + 1 - 2 = 4	
Once you've isolated the Absolute Value	→ x + 1 = 3	

Definition	Algebraic Definition of Absolute Value	
• If $x \ge 0$, then $ $	$x \mid = x$.	• If $x < 0$, then $ x = -x$.

You could also remember that Absolute Value is defined as Distance from zero on a number line. You could be on both sides of zero (pos and neg) yet be the same distance away.

|x + 1| = 3

Therefore:

$$X + 1 = 3$$
 or $X + 1 = -3$
-1 -1
 $\chi = 2 \text{ or } -4$

