

 $Log_{4}100 = x$ $\frac{Log100}{Log4} = x$ $\frac{3}{32} \approx x$

Solve: $20(3)^{\times} = 450$ $3^{\times} = 22.5$ $\log_{3} 22.5 = X$ $\log_{3} 22.5 = 2.83$ $\log_{3} 3$ Solve. 35 - 4^x = 17 -35 - 35 $-\frac{4^{x}}{-1} = -\frac{18}{-1}$ $4^{x} = 18$ $|\sigma_{34}|^{8} = x$ $\frac{10518}{109^{4}} = x \rightarrow 2.08$

Solve: $Log_{9}(2x-1) = 3$ $q^{-3} = 2x - 1$ 72q = 2x - 1 1 + 1 + 1 230 - 2x365 - X

The value of a house has been decreasing 7.5% each year. The house was worth \$180,000 in 2001. UOU - 7.5 = 92.5In how many years will the value first b = .925. In how many years will the value first b = .925. 45,000=180,000(0.925)^X (80,000 (80,000) .25 = .925^X $105.925^{X} = .725^{X}$ $105.925 = .725^{X}$ 105.925 = .728 yrs You invest \$20,000 in an account that pays 9% annual interest.

How many years, to the nearest hundredth, will it take to double your investment?

$$\frac{100+9}{2000} = 109\%$$

$$\frac{2000}{2000} (1.09)^{X} = \frac{40,000}{20000}$$

$$\frac{1.09^{X}}{20000} = 2$$

$$\frac{109}{1.09} = -X = -\frac{8.04475}{1091.09}$$

The population of a city in 2005 was 342,700. The population has been increasing 3.92% each year. In how many years, rounded to the nearest hundredth, will the population reach 1,000,000?

$$\frac{100 + 3.92}{103.92 \cdot 1.}$$

$$\frac{342,700}{342,700} = \frac{1,000,000}{342,700}$$

$$\frac{1000,000}{1.0392} = \frac{1,000,000}{342,700}$$

$$\frac{1000,000}{109}$$

$$\frac{1000,000}{342,700}$$

$$\chi = 27.85$$

You can now finish Hwk #35.

Sec 8-5

Page 464

Problems 3, 4, 10, 11, 23, 24, 30, 31, 37, 40