Algebra 2 Chapter 7 Monday, May 23, 2016 *1. Simplify. Use absolute value symbols as needed.

a) $\sqrt{48g^{22}h^{12}k^{15}}$ b) $\sqrt[3]{72R^{27}S^{26}}$ c) $\sqrt[4]{162m^{17}n^{31}}$

*2. Simplify each. Assume that all variables are positive numbers. Make sure denominators are rationalized if necessary.

a) $3\sqrt{150} - 7\sqrt{54} - \sqrt{24}$ b) $\sqrt{12a^5b^6} \cdot \sqrt{18a^7b^3}$

c)
$$\frac{\sqrt[3]{5w^7x^{14}}}{\sqrt[3]{20w^{13}x^5}}$$
 d) $(8 - 2\sqrt{7})(3 - 5\sqrt{7})$

- e) $(11 + \sqrt{13})(11 \sqrt{13})$ f) $\sqrt[3]{9g^{11}h^2} \cdot \sqrt[3]{15g^6h^5}$
- *3. Rationalize each denominator and simplify. Assume all variables are positive numbers.

a)
$$\frac{24a^5}{\sqrt{6a^3b^{11}}}$$
 b) $\frac{12c^8d^2}{\sqrt[3]{25c^8d^{13}}}$

c)
$$\frac{16}{5+\sqrt{7}}$$
 d) $\frac{17w}{\sqrt[5]{3w^8x^{21}}}$

- *4. Rewrite in radical form. a) $B^{\frac{3}{2}}$ b) $5Q^{\frac{7}{8}}$
- *5. Rewrite in exponential form. a) $\sqrt[6]{11A^5}$ b) $\sqrt[5]{H}$
- *6. Simplify each. Assume that all variables are positive numbers. a) $(6w^{\frac{-3}{4}})^2$ b) $(27c^{12})^{\frac{-5}{3}}$
- *7. Solve each equation. Check for extraneous solutions.
- a) $\sqrt[3]{5x+3} = \sqrt[3]{2x-9}$ b) $6\sqrt{2x+3} 8 = 40$ c) $2(x-5)^{\frac{3}{4}} = 54$

d) $\sqrt{2x+15} - x = 0$ e) $\sqrt{3x+37} - 3 = x$

*8. Write the equation of the inverse relation for each function.

a) $f(x) = \frac{3x^5 + 7}{8} + 1$ b) $y = 9 \cdot \sqrt[4]{2x + 5} - 11$ c) $y = 2\left(\frac{4x + 7}{11}\right)^3$

*9. Tell if the inverse relation of each is a function or not. a) $y = x^3 + 7x^2$ b) $y = 5 \cdot \sqrt[3]{x+2} - 1$

*10. Write the equation of each square root function. a) b)

*11. Graph each square root function. a) $y = -4\sqrt{x+5} + 6$ b) $y = \sqrt{-(x-3)} + 1$ c) $y = -2\sqrt{-(x+2)} + 3$

*12. Find the Domain and Range of each Square Root function below a) $y = -9\sqrt{x+7} - 12$ b) $y = \sqrt{-(x-5)} + 8$

13. State the Domain and Range of the inverse relation to the graph shown below.

