Algebra 2 Bellwork Tuesday, May 10, 2016

Use the Unit Circle for this Bellwork.

Find the EXACT value of each.

1. $\operatorname{Tan}\left(\frac{-29\pi}{6}\right) =$ 2. $\operatorname{Cos1305^{\circ}} =$ 3. $\operatorname{Sin}(-6720^{\circ}) =$

Find ALL angles, $0 \le \theta \le 2\pi$ that makes each statement true. Give answers in radians.

4. $\sin\theta = -\frac{1}{2}$ $\theta =$ 6. $\cos\theta = \frac{\sqrt{2}}{2}$ 5. $\tan\theta$ is undefined $\theta =$ 7. $\tan\theta = -\sqrt{3}$

 $\theta =$

8. Find θ if Tan $\theta = -\frac{\sqrt{3}}{3}$ and Cos $\theta < 0$

 $\theta =$

9. Find Sin θ if Cos $\theta = -\frac{\sqrt{3}}{2}$ and $\pi \le \theta \le \frac{3\pi}{2}$

Algebra 2 Bellwork Tuesday, May 10, 2016 Answers Use the Unit Circle for this Bellwork.

Find the EXACT value of each. 1. $\operatorname{Tan}\left(\frac{-29\pi}{6}\right) = \frac{-\frac{1}{2}}{-\frac{1}{2}} = \frac{\sqrt{3}}{3}$ 2. $\operatorname{Cos1305^{\circ}} = -\frac{\sqrt{2}}{2}$ 3. $\operatorname{Sin}(-6720^{\circ}) = \frac{\sqrt{3}}{2}$ $= \operatorname{Tan}\left(\frac{7\pi}{6}\right) = \frac{-\frac{1}{2}}{-\frac{1}{3}/2} = \frac{\sqrt{3}}{3}$ $= \cos 225 = -\frac{\sqrt{2}}{2}$ $= \sin (120) = -\frac{\sqrt{3}}{2}$ Find ALL angles, $0 \le \theta \le 2\pi$ that makes each statement true. Give answers in radians.

4.
$$\sin\theta = -\frac{1}{2}$$

 $\theta = \frac{7\pi}{6}, \frac{11\pi}{6}$
6. $\cos\theta = \frac{\sqrt{2}}{2}$
 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$
 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$
 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$
 $\theta = \frac{\pi}{3}, \frac{5\pi}{3}$
8. Find θ if $\tan\theta = -\frac{\sqrt{3}}{3}$ and $\cos\theta < 0$
9. Find $\sin\theta$ if $\cos\theta = -\frac{\sqrt{3}}{2}$ and $\pi \le \theta \le \frac{3\pi}{2}$
 $\theta = \frac{7\pi}{3}, \frac{5\pi}{3}$
9. Find $\sin\theta$ if $\cos\theta = -\frac{\sqrt{3}}{2}$ and $\pi \le \theta \le \frac{3\pi}{2}$
 $\theta = \frac{7\pi}{3}, \frac{5\pi}{3}$
 $\theta = \frac{7\pi}{6}, \frac{5\pi}{6}$
 $\theta = \frac{7\pi}{6}, \frac{5\pi}{6}, \frac{5\pi}{6}, \frac{5\pi}{6}$
 $\theta = \frac{5\pi}{6}, \frac{5$