



Imaginary Numbers:
$$\sqrt{-1} = i$$
 i is called the imaginary unit.

3.
$$\sqrt{-17}$$

5.
$$\sqrt{-36} + \sqrt{-81}$$

6.
$$2\sqrt{-12} + 5\sqrt{-27}$$

$$2\sqrt{3}\sqrt{4} + 5\sqrt{9}\sqrt{3}$$

 $4\sqrt{3} + 15\sqrt{3}$

Complex Numbers:

any number that can be written in the form: a + bi (a and b can be any real #) of a Complex

Standard Form Number

Imaginary Real Part Part

Real Number: when b=0

Imaginary Number: when b≠0 (a may or may not be zero)

10-7i or 13i Examples of Imaginary #'s:

The terms Complex Number and Imaginary Number are quite often used interchangeably.

Write each as a Complex Number in Standard Form

1.
$$2 + \sqrt{-9}$$

2.
$$\sqrt{\frac{-12}{4\cdot 3}} - 5$$

$$i = \sqrt{-1}$$

$$i^2 = -1$$

Simplify each:

1.
$$4i(3+6i)$$
 2. $(2+3i)(1-5i)$ $2+3i$ $2 + 3i$ $2 + 3i$

Simplify each expression:

1.
$$(6 - \sqrt{-64}) + (5 + \sqrt{-49})$$

 $(6 - 8i) + (5 + 7i)$

2.
$$(-11 + \sqrt{-9}) - (6 - \sqrt{144})$$

$$(-11 + 3i) - (6 - 12i)$$

$$(-17 + 15i)$$