

What do the equations have in common?	Degree	Lead Coeff
$Y_1 = 4x - 2$)	Ψ
$Y_2 = 0.25x^3 + x + 1$	3	0.25
$Y_3 = 0.1x^5 - 2x - 3$	5	0.1
	000	Pos

all these functions are considered Positive Odd functions

 $Y_1 = 4x - 2$ $Y_2 = 0.25x^3 + x + 1$ $Y_3 = 0.1x^5 - 2x - 3$

What would happen if they all had a negative leading coefficient?

Graph all three of these in a Standard Window:

$$Y_1 = x^2$$

$$Y_2 = 0.5x^4 + 3x - 1$$

$$Y_3 = 0.1x^6 - 5x^2 + x$$

 $Y_1 = x^2$ $Y_2 = 0.5x^4 + 3x - 1$ $Y_3 = 0.1x^6 - 5x^2 + x$

What would happen if they all had a negative leading coefficient?

Even Functions: Largest exponent is EVEN when expanded This is called the degree of the function.

Positive Leading Coefficient: Moves from the second quadrant to the first quadrant. Like a parabola with a>0

Negative Leading Coefficient: Moves from the third quadrant to the fourth quadrant. Like a parabola with a<0

Even Functions

Positive Leading Coefficient: Moves from the second quadrant to the first quadrant. Like a parabola with a>0

Negative Leading Coefficient: Moves from the third quadrant to the fourth quadrant. Like a parabola with a<0 This is called the END BEHAVIOR of an EVEN function

End-Behavior:

The behavior of the graph on the far left and the far right.

How the value of the function (y) changes as x becomes larger negative LEFT END $x \rightarrow -\infty$ and larger positive RIGHT END. $x \rightarrow \infty$

END BEHAVIOR ODD Functions:		
Positive Leading Coefficient: Negative Leading Coefficient:		
(\swarrow, \nearrow)	(\diagdown, \searrow)	
as $x \to -\infty, y \to -\infty$	as $x \to -\infty, y \to \infty$	
as $x \to \infty, y \to \infty$	as $x \to \infty, y \to -\infty$	

State the end behavior of each polynomial. 1. $y = 4x^3 - 6x^2 + 11x - 93$ Pos ODD (L) 2. $y = 5x(x+2)(x-7)^2$ POSEVEN (1) 3. $f(x) = 9x + 6x^2 - x^3 + 13$ $M = 5 \circ 0 D$ 4. y = (9x - 7)(4 - x)NEG EVEN (\checkmark)

You can now finish Hwk #26:

Page 312

Problems 1-10