1. Monomial:

A real number, a variable, or the product of a real number and variables.

Give three examples of a monomial:

a Term

2. Polynomial:
The sum of one or
more monomials
One or more terms

Give two examples of a polynomial:

A monomial is a polynomial with just one term

- 4. What does a polynomial in standard form look like?

 Terms are put in descending order using the degree(exponents) with the term having the largest exponent first.
- The leading coefficient of a polynomial is
 The coefficient of the term with the largest exponent.
 If it's in Standard Form it will be the first coefficient.
- 6. The degree of a polynomial is

The largest degree(exponent) of any term.

If it's in Standard Form it will be the first exponent.

- 3. a. The exponents of monomials and polynomials must be what kind of numbers?

 Whole Numbers
- b. The coefficients of a polynomial must be what kind of numbers?

 Real Numbers

7. Complete these two tables by filling in the blanks.

Degree of Polynomial	Name by Degree	
0	Constant	
1	Linear	
2	Quadratic	
3	Cubic	

# of terms in polynomial	Name by # of terms	
1	Monomial	
2	Binomial	
3	Trinomial	

a) $9x + 2 - x^2$

Standard Form: $-\chi^2 + 9\chi + 2$

Degree: 7

Leading Coefficient:

Name by Degree: Quadratic

Name by # of terms: Trinomial

8. Is each of the below a polynomial? If not give a reason.

a)
$$y = \frac{3}{7}x^2 + 3x - 14x^4 + 4$$

$$y = 4x + x^3 - \frac{8}{x}$$

c)
$$y = 9\sqrt{x} + 3x^7 - x^{\frac{2}{3}}$$

$$y = \mathfrak{D} + 10ix^4 - 15$$

NO

b) $15x + 8x^3 - 9x$ simplify first: $= 8x^2 + 6x$

Standard Form: $8x^2 + 6x$

Degree:

Leading Coefficient:

Name by Degree Cubic

Name by # of terms: Binomial

10. State the degree of each polynomial.

Polynomials in Expanded Form:

a)
$$7x^2 + 12 - 13x^4 + 8x$$

b)
$$9x + 1$$

Degree:

Degree:

Degree:

This is called factored form

$$y = (3x + 1)(x - 8)$$

This is called expanded form

$$y = 3x^2 - 23x - 8$$

1.
$$y = (-2x^5) + 8x^3 + 24x^2 - 9x + 73$$

DEG=
Lead Coeff=

2.
$$y = 10x^2 + 16x - 4x^4 + 3x^3 - 2$$

DEG=

Lead Coeff=

Polynomials in Factored Form:

d)
$$(x+3)(2x-1)(x+6)$$

 $(2x)(2x)(x) = 2x^3$

Degree:

e)
$$(x-7)^2(x-5)^3$$

 $\chi^2 \cdot \chi^3 = \chi^2$
Degree:

State the degree and leading coefficient of each.

2.
$$y = (2x - 7)(3x + 1)(4x - 9)$$
 Deg = \Rightarrow

State the degree and leading coefficient of each.

5.
$$y = -2x(2x - 5)^{3}(3x + 1)^{2}$$
 Deg = 6
LC = $-1/4/4$
6. $y = (2x + 9)^{2}(2 - 5x)^{3}(4 - 3x)^{2}$ Deg = 7
 $-1/4/4$ $-1/4/4$ $-1/4/4$ $-1/4/4$ $-1/4/4$ $-1/4/4$ $-1/4/4$ Deg = 7
LC = $-4/4/4$ $-1/4/4$

State the degree and leading coefficient of each.

4.
$$y = (2x + 3)(x - 2)^{3}(x + 6)^{3}$$
 Deg = $2x + 3$ LC = $2x + 3$

5. The leading coefficient of a polynomial is

The coefficient of the term with the largest exponent when the polynomial is in expanded form.

Only the first coefficient if it is written in Standard Form.

Find the leading coefficient of each polynomial.

1.
$$3x - 7x^2 + 5 - x^3$$

LC = 1

2.
$$(2x + 3)(6 - x)(5x - 1)$$

LC = -10 3. $x(3x - 4)^2(x + 8)(7-2x)^3$ LC = -72 What will be important for Ch 6 is whether the leading coefficient of a polynomial is POSITIVE or NEGATIVE

6. The degree of a polynomial is

The largest exponent when written in expanded form.

Only the first exponent when written in Standard Form

Find the degree of each polynomial.

1.
$$4x^2 + 6x - x^4 + 12$$

2.
$$(x + 3)(x - 7)(x - 12)$$

What will be important for Ch 6 is whether the degree of a polynomial is EVEN or ODD

3.
$$x(x-4)^2(x+8)(x+1)^3$$

Degree = 7

Graph all three of these in a Standard Window:

$$Y_1 = 4x - 2$$

$$Y_2 = 0.25x^3 + x + 1$$

$$Y_3 = 0.1x^5 - 2x - 3$$

End Behavior of polynomial graphs.

What do the graphs have in common?

$$Y_1 = 4x - 2$$

$$Y_2 = 0.25x^3 + x + 1$$

$$Y_3 = 0.1x^5 - 2x - 3$$

All these functions start and end in the same quadrant.

What do the equations have in common?	Degree	Lead Coeff
$Y_1 = 4x - 2$)	Ψ
$Y_2 = 0.25x^3 + x + 1$	3	0.25
$Y_3 = 0.1x^5 - 2x - 3$	5	0.1
	QDD	Pos

all these functions are considered Positive Odd functions

$$Y_1 = 4x - 2$$

$$Y_2 = 0.25x^3 + x + 1$$

$$Y_3 = 0.1x^5 - 2x - 3$$

What would happen if they all had a negative leading coefficient?

Odd Functions

Positive Leading Coefficient:

Moves from the third quadrant to the first quadrant.

Like a line with a Positive slope

Negative Leading Coefficient:

Moves from the second quadrant to the fourth quadrant.

Like a line with a Negative slope

This is called the END BEHAVIOR of an ODD function