Completing the Square

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = (x + \frac{b}{2})^2$$
1st

Solve by completing the square.

$$x^2 + 22x = 5$$

$$x^2 + 22x + 121 = 5 + 121$$

$$(x + 11)^2 = 126$$

Now solve using Square Roots

$$x+11 = \pm 3\sqrt{14}$$

$$x = -11 \pm 3\sqrt{14}$$

Complete the square for each.

1.
$$x^2 + 14x + 49 = (x + 7)^2$$

2.
$$x^2 - 24x + 144 = (x -12)^2$$

3.
$$x^2 + 56x + \frac{184}{28} = (x + \frac{28}{28})^2$$

4.
$$2x^2 + 8x + 16 = (x + 4)^2$$

$$x^2 - 14x + 11 = 0$$

Rewrite into: $ax^2 + bx = c$ Form

$$x^2 - 14x = -11$$

$$x^2 - 14x + 49 = -11 + 49$$

$$x^2 - 14x + 49 = 38$$

$$(x - 7)^2 = 38$$

Now solve using Square

Solve by completing the square:

$$x^{2} - 10x + 7 = 0$$
 $x^{2} - 10x + 7 = 0$
 $(x-5)^{2} = 18$
 $x - 5 = \pm 3\sqrt{5}$
 $x = 5 \pm 3\sqrt{5}$

Solve by completing the square:

$$x^2 + 4x + 27 = 0$$

$$X^2 + 4x + 4 = -27 + 4$$

$$(x+z)^2 = -27 + 4$$
 $(x+z)^2 = \sqrt{-23}$
NO REAL SOL

Solve by completing the square:

$$x^{2} + 6x - 16 = 0$$

 $+ 16 + 16$
 $x^{2} + 6x = 16$
 $(x+3)^{2} = 16$

Find the coordinates of the vertex of each quadratic.

Vertex Form

$$y = (x + 3)^2 - 7$$

Standard Form

$$y = x^{2} + 6x - 11$$

$$(-3)^{2} + 6(-3) - 11$$

$$9 - 18 - 11$$

$$-9 - 11 = -20$$

$$(-3)^{2} + 6(-3)^{2} - 11$$

Completing the Square to write equation in Vertex Form.

$$y = x^2 + 6x - 11$$

Rearrange so that one side is only $x^2 + bx$

$$y + 11 = x^2 + 6x + 9$$

Now complete the square

$$\sqrt{+20}$$
 — $(x+3)^2$ Move the 20 over to the right side.

Y= (x+3)2-20 Verlex (-2,-20)

Solve by completing the square:

$$x^2 + 3x - 10 = 0$$

$$x^{2} + 3x + 9 = 10 + 9$$

$$(x + \frac{3}{2})^{2} = 49$$

$$(x + \frac{3}{2})^{2} = 47$$

$$(x + \frac{3}{2})^{2}$$

Write each equation into Vertex Form

1.
$$y = x^{2} + 8x + 3$$

$$2! (y) = (x^{2} + 12x - 19)(-1)$$

$$y - 3 = x^{2} + 6x + 166 - -y = x^{2} - 12x + 19$$

$$y + 13 = (x + 4)^{2}$$

$$y = (x + 4)^{2} - 13$$

$$-y - 19 = (x - 12x + 36)$$

$$-y - 19 = (x - 12x + 36)$$

$$-y + 17 = (x - 16)^{2}$$

$$-y + 17 = (x - 16)^{2}$$

$$-1 (-y) = (x - 16)^{2} - 17$$

Why can't you solve this equation by completing the square, the way it's written.

$$2x^2 + 16x - 26 = 0$$
 a must be 1

