
You can only solve a quadratic equation using square roots if the equation is:

- 1. In Standard Form $(ax^2 + bx + c = 0)$ and there is no linear term. $ax^2 + c = 0$
- 2. In Vertex Form.

$$y = a(x - h)^2 + k$$

The x-intercepts of a parabola are 2 and 8, find the equation for the Line of Symmetry.

The LOS is located exactly in the middle of the x-intercepts:

It is their Mean!

Find the exact solutions to each:

3.
$$2(x+3)^2 - 1 = 31$$
 $+(1+1)$
 $2(x+3)^2 = 32$
 $(x+3)^2 = 32$

4.
$$(x-2)^2 + 11 = 51$$

$$-11 - 11$$

$$\sqrt{(x-2)}^2 = |40| = |40|$$

$$x-2 = \pm 2|10|$$

$$+2 = \pm 2|10|$$

$$= 2 \pm 2|10|$$

Forms for the Equation of a Quadratic

Standard Form

$$y = ax^2 + bx + c$$

LOS:
$$x = \frac{-b}{2a}$$

Vertex:
$$\left(\frac{-b}{2a}\right)$$

Vertex Form

$$y = a(x - h)^2 + k$$

LOS:
$$x = h$$

Intercept Form (Factored Form)

to find the v-int replace x with zero

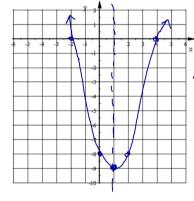
Use this factored form of a quadratic.

$$y = (x - 3)(x + 5)$$

1. Find the x-intercepts. x = 3.5

$$0 = (x - 3)(x + 5)$$

2. Find the LOS $\chi = \frac{3+-5}{2} = -1$


find the zeros of each factor

$$x = 3, -5$$

$$(-1-3)(-1+5)=(-4)(4)$$

3. Find the Vertex
$$(-1-3)(-1+5) = (-4)(4)$$

4. What is the y-intercept? $(0-3)(0+5) = (-3)(5) = -15$

(1,-9) (-3)(3) (-4)(2)=-8

Intercept Form (Factored Form)

$$Y = (x-m)(x+n)$$

- 1. Find x-intercepts first: 0 = (x m)(x + n)zeros of each factor
- 2. Find LOS: x = average of the x-int
- replace x with LOS 3. Find the Vertex (LOS, and find v
- 4. Find y-int: Replace x with zero. = product of the constants in