Remember, the vertex is either the maximum or the minimum of a quadratic function.

The max/min value of a quadratic function is.....the y-coordinate of the vertex

When a max/min of a quadratic occurs is....the x-coordinate of the vertex

For each quadratic find the following:

- a. The equation of the LOS
- b. The coordinates of the vertex
- c. The y-intercept.

1.
$$y = -3x^2 + 12x - 5$$

a. LOS:
$$\frac{-12}{-6} \times -2$$

b. Vertex:
$$(2,7)$$

c. y-int
$$-5$$

2.
$$y = 4(x + 6)^2 - 11$$

a. LOS:
$$\chi = -6$$
b. Vertex: $\left(-6 - 11\right)$

A ball is shot into the air with an initial velocity of 80 ft/sec from the top of a 50 ft tall building. The following equation models the height (ft) of the object as a function of time (sec).

$$h(t) = -16t^2 + 80t + 50$$
 $\begin{pmatrix} t & h & -3.5 \\ 2.5 & 16.0 \end{pmatrix}$ The maximum

- 1. Find the time it takes the object to reach its maximum height. 25 500
- 2. Find the maximim height of the object. 150 ft

For each quadratic find the following:

- a. The equation of the LOS
- b. The coordinates of the vertex
- c. The y-intercept.

3.
$$y = 7x^2 - 8$$
 $b = 0$

4.
$$y = -2x^2$$

a. LOS:
$$X = \frac{-\xi}{-4} = 2$$

b. Vertex:
$$(0, -\xi)$$

c. y-int
$$-8$$

In general, if the function y = f(x) is transformed the following way:

$$y = a f(x - h) + k$$

The parent function has been:

- Streched/Shrunk vertically by a factor of a
- Reflected over x-axis if a<0
- Translated horizontally h units.
- Translated vertically k units.

Another way to find a:

Using the vertex of (1,3) you can get this much of the equation:

$$y = a(x - 1)^2 + 3$$

Use the coordinates of ANY other point on the graph: If you pick (2, -1)

replace x with 2 and y with -1 then solve for a. \rightarrow -1 = a(2 - 1)² + 3

The eq is:
$$y = -4(x - 1)^2 + 3$$

Write the equation of this parabola in Vertex Form.

1.

1 right, 3 up

Vertex (1, 3) $y = a(x-1)^2 + 3$ $y = -4(x-1)^2 + 3$ compared to the parent function

compared to the parent function

This shows that this graph is 4 times taller but upside down compared to the parent function: a = -4

Write the equation of this parabola in Vertex Form.

2.

this shows that this graph is half as tall as the parent function: a = 1/2

