The graph of an equation with two variables.

A line on the x-y plane.

A system of linear equations (2 variables) can have how many solutions?

$$y = 3x - 4$$

$$2x + 6y = 21$$

One Solution: Lines intersect at ONE point

No Solution: Lines are parallel

Many Solutions: Equations are the same line

What does a system two linear equations look like?

Two lines on the same graph.

The solution to a system of linear equations is

the point where the lines intersect.

The graph of an equation with three variables

$$12x + 9y + 6z = 36$$

$$x$$
-int = 3
 y -int = 4
 z -int = 4

What does a system of equations in three variables look like?

Planes in space.

One Solution:

OR

A system of equations in three variables requires THREE EQUATIONS.

A system of equations in three variables can have how many solutions?

$$2x + 3y + 4z = -1$$

of solutions possible:

$$6x - 7y + z = 34$$

One Solution

$$-4x + 5y - z = -24$$

No Solution

Many Solutions

3 parallel planes

All 3 planes don't intersect at the same spot.

Many Solutions:

The 3 planes intersect to form a line:

There are an infinite # of points on a line.

They are all the same plane

Solve this system of equations. Give your answer as an ordered triple.

$$2x - y + 3z = 21.5$$

or

$$3x - 4z = -22$$

$$7y + 2z = 38.5$$

$$\begin{cases} 2 & -1 & 3 \\ 3 & 0 & -4 \\ 0 & 7 & 2 \end{cases}$$

How would you solve this system of equations in three variables:

$$x + 3y + 7z = 43$$

Use matrices!

$$4x - 3y + z = 19$$

$$x + 5y - 2z = 13$$

ordered triple

You can now finish Hwk #14 Sec 3-6

Page 158 Problems 26, 27, 30, 31

AND

Page 218 Problem 30

Write out Matrices A and B then give the solution as an ordered triple.

What does a system of quadratic equations look like?

Two parabolas on the same x-y plane.

Possible solutions to a system of quadratic equations.

One Solution:

No Solution:

Two Solutions:

Many Solutions:

They are the same parabola