Vocab Booklet

Symmetry:

Reflection

x-axis reflection:

- "upside-down"
- Flip over x-axis
- Points have the same x-coord but opposite y-coord.

y-axis reflection:

- "backwards"
- Flip over y-axis
- Points have the opposite x-coord but same y-coord.

Rotation

- Turn a figure about a point which is called the center of rotation.
- Defined by giving a
 Direction (CW or CCW)
 Distance (number of degrees)

Absolute Value Graphs Exploration.

Graphing Absolute Value on the Ti-84

$$y = a|x - h| + k$$
 a, h, and k will transform the graph of y = |x|

Linear Family of Functions: Example Equation: $y = -2x + 5$	Parent Function: $y = X$
XY	
-2 9 -1 7	
0 5 1 3	
1 3 2 1	Symmetry:
y = -2x + 5	None
y = X	No Reflectional Symmetry
	180° Rotational Symmetry (symmetry about the origin)

1. Graph $Y_2 = |x + 3|$ How has this graph moved compared to the parent function?

Translated 3 units left.

2. Graph $Y_2 = |x - 5|$ How has this graph moved compared to the parent function?

Translated 5 units right

4. Graph $Y_2 = |x| - 4$ How has this graph moved compared to the parent function?

Translated 4 units down

3. What equation would move the graph of y = |x| 7 units to the left?

5. Graph $Y_2 = |x| + 6$ How has this graph moved compared to the parent function?

Translated 6 units up

6. What equation would move the graph of y = |x| 2 units up?

$$\mathcal{L} = |X| + 2$$

Translation left or right

moves 5 units right

$$|x + 4|$$
:

moves 4 units left

Translation up or down

+ 7:

moves 7 units up

- 1:

moves 1 unit down

Use each description to write the equation of the absolute value function

7. The parent function y = |x| is moved 4 units right and 6 units down.

8. The parent function y = -|x| is moved 8 units up and 10 units left.

9. The parent function y = -|x| and the vertex is (-7, -5)

10. State the coordinates of the vertex for each Absolute Value function.

a.
$$y = |x - 8| + 7$$

b.
$$y = |x + 10| - 9$$

(8,7)

11. The graph at the right is a translation of y = |x|. Write the equation of this function.

Streches and Shrinks

This equation represents either a strecth (taller) or a shrink (shorter) V-shape.

X-axis Reflection The graph of y = -|x| is a reflection of y = |x|

over the x-axis so the graph is an upsidedown "V".

How does this graph compare to the parent function y = |x|? 1. Graph $Y_2 = 7|x|$

It is taller - - Vertical Stretch

Vertical Stretch Factor of 7 means it is seven times taller. 2. Graph $Y_2 = \frac{1}{2}|x|$

How does this graph compare to the parent function y = |x|?

It is shorter - - Vertical Shrink

Vertical Stretch Factor of 0.5 means it is half as tall

3. Write the equation of an absolute value function that is one-fourth as tall as y = |x|

4. Write the equation of an absolute value function that is 3 times taller as y = |x| but opens down.

$$\int_{0}^{\infty} = -3|X|$$

$$y = a|x - h| + k$$

- a > 0 V opens up
- a < 0 V opens down
- 0 < a < 1 Vertical Shrink
- a > 1 Vertical Stretch

- also represents the slope of the sides of the absolute value graph.
 - 5. Write the equation of each absolute value function shown below:
 - a) EQ:

y=5 (x-2) 2 RT 4 DOWN

b) EQ:

slope of the sides

The negative is because the graph opens downward.

b) $y = \frac{1}{3}|x+1| - 2$

1 left, 2 down, one-third as tall, opens up.

Vertex: (-1, -2)

Slope of sides: $\frac{1}{3}$

6. Graph each absolute value function.

3 right, 1 up, 2x taller, upside down.

 $y = -2|x - 3| + 1^{\bullet}$

Vertex (3,1) m = 2

$$m=\frac{1}{5}$$

You could also use the Line of Symmetry to reflect one side in order to plot the other side.

You can now finish Hwk #4:

Practice Sheet: Graphs of Absolute Value Functions (Sec 2-5)

Due tomorrow

Graph this Absolute Value Inequality:

$$\gamma \geq -4/x + 3/+6$$

- Vertex (-3, 6)
 Opens Down
 Slope of sides is 4/1
 because of the inequality
 ≥ you shade above the graph.

Write the equation of this Absolute Value function:

$$y = \frac{1}{2} |x-2| - 5$$