Inequalities connected with the word AND:

Can be written as one inequality: 3 < w < 7

Inequalities connected with the word AND:

Can be written as NO SOLUTION

Inequalities connected with the word AND:

Can be written as one inequality: w < 3

When you graph two inequalities connected with the word

AND

the final solution is:

The interval where they OVERLAP

Inequalities connected with the word OR:

Can be written as ALL REAL NUMBERS

Inequalities connected with the word OR:

Can be written as only w < 3 OR w > 7

Inequalities connected with the word OR:

Can be written as one inequality: w < 7

When you graph two inequalities connected with the word OR the final solution is:

Anywhere the graph is shaded. (for either or both inequalities)

What would have to be true for a compound inequality using the word **AND** to have NO SOLUTION?

- There are no numbers that make both inequalities true.
- Graphs of inequalities don't overlap anywhere.

What would have to be true for a compound inequality using the word **OR** to have **NO SOLUTION**?

• Both inequalities must be NO SOLUTION.

What would have to be true for a compound inequality using the word **AND** to have a solution of **ALL REAL NUMBERS**?

- The solution to BOTH inequalities must be All Real Numbers.
- Both graphs must be the entire number line.

What would have to be true for a compound inequality using the word **OR** to have a solution of **ALL REAL NUMBERS**?

- The solutions to the two inequalities combined must contain all real numbers.
- Graphs must point in opposite directions and overlap.

What is the solution to the above compound inequality using the word....

AND

 $\times = 1$

OR

X>-3

What is the solution to the above compound inequality using the word....

AND

OR

$$\chi \leq 0$$

What is the solution to the above compound inequality using the word....

AND

-24x43

OR

Al Real #'s

What is the solution to the above compound inequality using the word....

AND

50 Solution

OR W<-100 W73