Squaring and Square Root are inverses of each other. $()^2$

The graph of an inverse relation is the reflection of the original graph over the line y=x.

What does the graph of ()² look like?

Since √ is the inverse of ()² what would you expect the graph of √ to look like?

$$y = \sqrt{x}$$

₹ ×

Why is the graph of the above only "half a sideways parabola"?

- If it were both halves then it wouldn't be a function.
- Without a sign in front of the radical it means the Principal Square Root (positive root).

$$y = a(x - h)^2 + k$$

h: Horizontal Translation

Vertex:

k: Vertical Translation

(h,k)

a: a>1 Vertical Stretch 0<a<1 Vertical Shrink a is neg: x-axis reflection (upside down)

 $y = 8(x - 9)^2 - 4$ State the Vertex of this parabola.

Describe the transformations to the parent function the following equation represents.

$$y = -3(x + 1)^2 - 8$$

- x-axis reflection (upside down)
- Vertical Stretch Factor of 3
- Shift 1 units left
- Shift 8 units down

Graph of the Parent Function:

$$y = \sqrt{x}$$

$$x \mid y$$

$$0 \mid 0$$

$$1 \mid y$$

$$Y \mid Z$$

$$y = a\sqrt{x - h} + k$$

7

k: Vertical Translation

h:

a: a>1 Vertical Stretch 0<a<1 Vertical Shrink

a is neg: x-axis reflection (upside down)

Horizontal Translation

The "vertex"

(h,k)

The new starting point or The new origin

The shapes of the square root function:

Match the graphs with the equations

1.
$$y = -\sqrt{-x}$$
 C

2.
$$y = \sqrt{x}$$
 B

$$y = -\sqrt{x}$$

4.
$$y = \sqrt{-x}$$

Graph this square root function

$$y = 2\sqrt{x+3} - 5$$
3 Left 5 down

STARTING PT

$$(-3, -5)$$

$$1 \times 2 \rightarrow 1$$

$$2 \times 2 \rightarrow 4$$

Graph this square root function

Graph this square root function

Graph this square root function

