
What I want you to know from Sec 7-7:

- 1. Given an original relation be able to tell if the inverse is a function or not.
- 2. Know the relationship between the Domain and Range of an original relation and the Domain and Range of the inverse relation.
- 3. Be able to write the equation of the inverse relation.

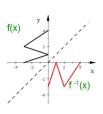
Will the inverse relation be a function?

В

Will the inverse relation be a function?

f(x)

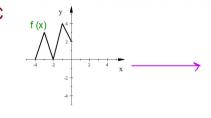
f(x)

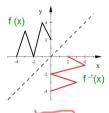

2

4

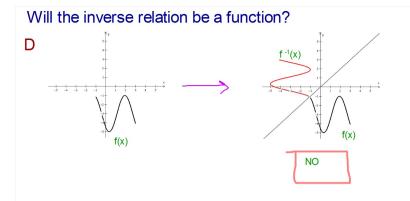
2

4

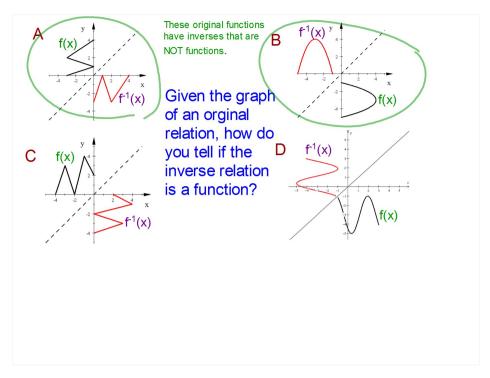

4



YES


Will the inverse relation be a function?

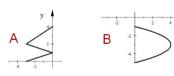
C



NO

<u>Horizontal Line Test</u>: a visual test to determine if the inverse relation will be a function.

If any horizontal line can intersect a graph more than once then the graph of the inverse is NOT a function



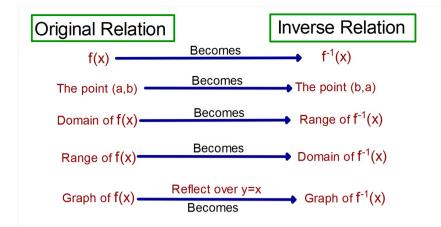
One-to-One Functions:

Each y value is produced from exactly one x value.

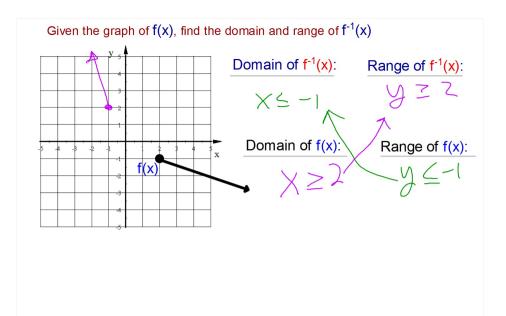
If horizontal lines can touch a graph at most one time.

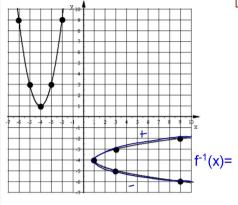
Inverses ARE functions

Many-to-One Functions:


Each y value may be produced from more than one x value.

If a horizontal line can touch a graph "many" times (more than once)


Inverses are NOT functions



Solve this equation for M

$$Q = \frac{\sqrt{CM - R}}{G} + A$$

$$M = \left(\frac{G(Q - A)^2}{G} + R \right)$$

$$f(x) = 2(x+4)^2 + 1$$

Equations of Inverses

- 1. Switch the variables x and y
- 2. Solve equation for y

$$y = 2(x+4)^{2} + 1$$

 $x = 2(y+4)^{2} + 1$