Use the given infomation to find the measure of all the anlges θ that meet each condition.

 θ in degrees (0° $\leq \theta \leq 360$ °)

1.
$$\sin\theta = -\frac{\sqrt{3}}{2}$$
 2. $\cos\theta = \frac{1}{2}$ $(60^{\circ})^{\circ}$ 300°

2.
$$Cos\theta = \frac{1}{2}$$

3.
$$\sin \theta = 0$$

3.
$$\sin\theta = 0$$

$$0, 150, 360$$
4. $\cos\theta = -\frac{\sqrt{2}}{2}$

$$(35, 225)$$

Use the given infomation to find the measure of all the anlges θ that meet each condition.

 θ in degrees (0° $\leq \theta \leq 360$ °)

- 3. $Tan\theta$ is undefined
- undefined x must be zero.

96,270

in the 1st and 3rd Quad.

Use the given infomation to find the measure of all the anlges θ that meet each condition.

 θ in degrees (0° < θ < 360°)

1.
$$Tan\theta = 1$$

y/x = 1 whenever y and x are the exact same coordinates.

2.
$$Tan\theta = -\frac{\sqrt{3}}{3}$$

1.
$$Tan\theta = 1$$

$$O = \frac{\sqrt{3}}{3}$$

$$O = \frac{\sqrt{5}}{3}$$

$$O = \frac{\sqrt$$

which comes from

Given $\sin \theta = \frac{4}{9}$ and $180^{\circ} \le \theta \le 270^{\circ}$ find the value of Cosθ and Tanθ

Draw a right triangle, label one of the acute angles θ and label the opposite leg 4 with the Hypotenuse = 9. Use Pythagorean Theorem

$$\cos 8 = -\frac{165}{9}$$
 Cos is neg in the 3rd Quad.

a. Given
$$Cos\theta > 0$$
 and $Sin\theta = -\frac{1}{2}$ find θ

 θ must be in the 4th Quadrant for Cos to be pos and Sin to be neg. For Sin θ = -1/2 θ must be 330°

b. Find Cosθ

Since
$$\theta = 330^{\circ} \cos \theta =$$
 \gtrsim

Given
$$90^{\circ} \le \theta \le 180^{\circ}$$

If
$$Cos\theta = -\frac{\sqrt{3}}{2}$$
 find $Sin\theta = \frac{1}{2}$

 θ must be 150° to be between 90° and 180° and for Cos θ to have the given value.

therefore $Sin\theta = 1/2$