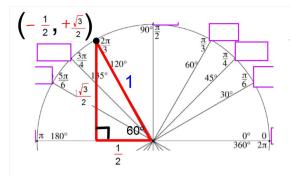

To find the coordinates of the point at 120° draw a line down to the x-axis

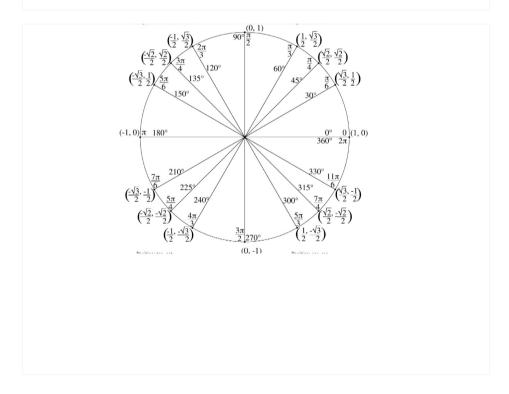

To find the coordinates of the point at 120° draw a line down to the x-axis to create a 30-60-90 triangle.



Fill out the entire Unit Circle.

Do as much as you can on your own.






find the exact value of each:

- 1. Cos120° - <u>/</u>
- 2. Sin120°

3. Tan120°

$$\frac{1}{2} = -\frac{1}{2} = -\frac{1}{2}$$



You will have a guiz over just the Unit Circle next week some time.

## Find the EXACT value of each.

4. 
$$\cos\left(\frac{-11\pi}{2}\right)$$
 5.  $\sin 96\pi$  6.  $\tan\left(\frac{-79\pi}{6}\right)$ 

Same as  $\cos \frac{\pi}{2}$  967 is coterminal  $\frac{\pi}{2}$   $\frac{7}{6}$  is coterminal  $\frac{\pi}{6}$   $\frac{$ 

$$-\frac{79}{6} \text{ with } \frac{57}{6}$$

$$-\frac{79}{6} \text{ Tan } \left(-\frac{79}{6}\right) = -\frac{57}{6}$$

$$\frac{-\frac{1}{2}}{-\frac{1}{3}} - \frac{1}{13} = \boxed{\frac{3}{3}}$$

## Find the EXACT value of each.

1. 
$$\cos \frac{29\pi}{3}$$
 2.  $\sin \frac{37\pi}{4}$  3.  $\tan \frac{57\pi}{2}$ 

2. 
$$\sin \frac{37\pi}{4}$$

3. 
$$Tan \frac{57\pi}{2}$$

$$\frac{2977}{3} \text{ is coterminal } \frac{57}{3}$$

$$\cos \frac{297}{3} = \cos \frac{57}{3}$$

$$\frac{29\pi}{3} \text{ is coterminal } \frac{5\pi}{3}$$

$$\frac{37\pi}{9} \text{ is coterminal } \frac{5\pi}{2}$$

$$\frac{57\pi}{2} \text{ is coterminal } \frac{7\pi}{2}$$

$$\cos \frac{29\pi}{3} = \cos \frac{5\pi}{3}$$

$$\sin \frac{37\pi}{9} = \sin \frac{5\pi}{4}$$

$$= \frac{72}{2} = \tan \frac{\pi}{2} = \frac{1}{6}$$

$$= \frac{72}{2}$$

$$= 4\pi \text{ defined}$$

## Use the given infomation to find the measure of all the anlges $\theta$ that meet each condition.

 $\theta$  in degrees ( $0^{\circ} \leq \theta \leq 360^{\circ}$ )

1. 
$$\cos\theta = -\frac{1}{2}$$
 $\cos\theta = -\frac{1}{2}$ 
 $\cos\theta = \frac{1}{2}$ 
Find the angles where the x-coord is -1/2

3.  $\cos\theta = 1$ 
5.  $\sin\theta = 0$ 
Find the angles where the x-coord is 1

Find the angles where the y-coord is  $\frac{\sqrt{3}}{2}$ 

Find the angles where the y-coord is  $\frac{\sqrt{3}}{2}$ 

Find the angles where the y-coord is  $\frac{\sqrt{3}}{2}$ 

3. 
$$\cos \theta = 1$$

2. 
$$\sin\theta = \frac{\sqrt{2}}{2}$$

$$4. \sin \theta = -\frac{\sqrt{3}}{2}$$

Use the given infomation to find the measure of all the anlges  $\theta$  that meet each condition.

 $\theta$  in degrees ( $0^{\circ} \leq \theta \leq 360^{\circ}$ )

6. 
$$\tan \theta = -1$$
Find all angles where  $135^{\circ}315^{\circ}$ 
the x and y coord are the same numbers but different signs.

7.  $\tan \theta = \sqrt{3} = 60^{\circ}, 240^{\circ}$ 
Since Tan is the ratio of y/x y must be  $\frac{13}{4}$  and x must be  $\frac{1}{3}$  and they must have the same sign in order to reduce to  $\frac{13}{3}$ 

8.  $\tan \theta = -\frac{\sqrt{3}}{3}$ 

Since Tan is the ratio of y/x y must be  $\frac{1}{2}$  and x must be  $\frac{4}{3}$  and they must have different signs in order to reduce to  $\frac{1}{\sqrt{3}}$  which will rationalize to become  $-\frac{\sqrt{3}}{3}$