$$4^{4} = 356$$

$$4^{3} = 64$$

$$4^{2} = 66$$

$$4^{1} = 4$$

$$4^{0} = 6$$

$$9^{\frac{1}{2}} = 5$$
 $25^{\frac{1}{2}} = 5$

$$X^{\frac{1}{2}} = \sqrt{X}$$

$$4^{4} = 256$$

$$4^{3} = 64$$

$$4^{2} = 16$$

$$4^{1} = 4$$

$$4^{0} = 1$$

$$4^{\frac{1}{2}} = 2$$

$$8^{\frac{1}{3}} = \sqrt[3]{8} = 2$$

$$27^{\frac{1}{3}} = \sqrt[3]{3}$$

$$x^{\frac{1}{3}} = \sqrt[3]{3}$$

Rational Exponents:

$$A^{\frac{1}{n}} = \sqrt[n]{A}$$

this symbol is called a radical sign

$$n$$
 is called the index ("what root")

 A a is called the radicand

$$A^m = \bigwedge^{m} \qquad A^{\frac{1}{n}} = \bigwedge^{n}$$

$$A^{\frac{m}{n}} = \sqrt[n]{A^m}$$
 or $\left(\sqrt[n]{A}\right)^m$

Write in radical form:

- a. $C^{\frac{3}{2}}$ b. $W^{\frac{1}{4}}$

 - 153 or (C)3

How would you say each?

- 1. \sqrt{B} the square root of B
- 2. $\sqrt[3]{C}$ the cube root of C
- 3. $\sqrt[4]{D}$ the 6th root of D
- 4. $\sqrt[n]{E}$ the nth root of E