Find both a positive and a negative coterminal angle for each. Give your answer in radians.

1.
$$\frac{29\pi}{9} \pm 2\pi$$
 2. $-\frac{49\pi}{11} \pm \frac{22\pi}{11}$
 $\frac{29\pi}{9} \pm \frac{18\pi}{9}$ $905: \frac{17\pi}{11}$
 $\frac{7}{11}$
 $\frac{7}{11}$

Find the exact values of x and y in each triangle.

Find an angle between 0 and 2π that is coterminal with each given angle. Give your answer in radians.

1.
$$\frac{23\pi}{6} - \frac{12\pi}{6}$$
2. $-\frac{17\pi}{4} + \frac{8\pi}{4} = -\frac{9\pi}{4} + \frac{8\pi}{4}$

$$= -\frac{\pi}{4} + \frac{8\pi}{4}$$

$$= -\frac{\pi}{4} + \frac{8\pi}{4}$$

Find the exact values of \boldsymbol{x} and \boldsymbol{y} in each triangle.

The Unit Circle:

A circle whose center is at the origin and its radius = 1.

Right triangle trigonometry involves angles with the following measures:

This means you were only able to find the Sin, Cos, and Tan of acute angles.

The unit circle is used to find the exact value for Sin θ , Cos θ , and Tan θ using the relationships in special right triangles.

So all the angles on the unit circle are related to either 30°, 60°, or 45°

fill in all the angles in degrees

all the angles in the unit circle are related to 30, 45, and 60.

fill in all the angles in radians.