x and y intercepts of Rational Functions:

Y-Intercepts: the result of replacing x with zero.

find the y-intercepts of each function.

1.
$$y = \frac{x^2 - 9x + 20}{x^2 + 7x + 10}$$
 y-int:

$$x^{2} + 7x + 10$$
2. $y = \frac{x^{2} - 4}{2x^{2} + 6x}$

$$(x) = \frac{x^{2} - 4}{2x^{2} + 6x}$$

$$(x) = \frac{x^{2} - 4}{$$

One of the VA is x=0 which is also why the graph doesn't cross the y-axis.

X-Intercepts: the result of replacing y with zero.

This means you are setting the ratio equal to zero and solving for x.

The only way a fraction equals zero is if the NUMERATOR equals zero.

In general, the y-intercepts of a Rational Function is the:

Ratio of the Constants

A graph can have at most ONE y-intercept.

find the x-intercepts of each function.

1.
$$y = \frac{x^2 - 9x + 20}{x^2 + 7x + 10} = (x - 5)(x - 4)$$

x-int: 5, 4

2.
$$y = \frac{x^2 - 4}{2x^2 + 6x} = \frac{(\chi + 2)(\chi - 2)}{2\chi(\chi + 3)}$$

x-int: $+2$) -2

$$3. \quad y = \frac{x^2 + 7}{x^2 + 3x + 2}$$

x-int: $X^2 + 7$ will never be zero which means that there are no x-intercepts

In general, the x-intercepts of a Rational Function are the:

Zeros of the numerator

A graph can have multiple x-intercepts.