Alg 2 Chapter 9 Review Fall 2014

Only state restrictions on variables when indicated.

1. State if each table represents Direct Variation, Inverse Variation, or Neither. For the tables that show a variation do the following:

c)

- i) State which kind of variation
- ii) State the variation constant.
- iii) Write the variation equation with the value of the constant.
- iv) Find the value of x when y = 100

a)			
-	X	Υ	
-	-4	32.8	
	8	65.6	
-	15	-124	
-	40	-320	

b)		
	Χ	Υ
	-20	-6.2
	-8	-15.5
	5	24.8
	16	7.75

X	Y
12	54
40	180
56	252
70	315

For each statement in 2 and 3 write the variation equation it represents

- 2. H varies directly with the product of M and N and inversely with the square of P
- 3. E varies jointly with B and the cube of G and inversely with the product of J and the square of K
- 4. A varies directly with D and inversely with the square of C. A = 15 when D = 12 and C = 4.
- a) Find the variation constant.
- b) Find the value of A when D=12 and C=7
- c) Find the value of D when A = 75 and C = 3
- 5. Simplify. State any restrictions on the variable. $\frac{6x^4 + 6x^3 36x^2}{8x^3 32x}$

6. Simplify this product.
$$\frac{2x^2 + 6x}{x^2 - 1} \cdot \frac{x^2 - 3x - 4}{x^4 - x^3 - 12x^2}$$

7. Simplify this quotient.

$$\frac{4x^2 - 36x + 32}{2x^2 - 13x - 7} \div \frac{x^2 + 4x - 5}{x^2 - 2x - 35}$$

Find each sum or difference. Simplify your answer.

$$8. \quad \frac{5x}{x^2 - 1} - \frac{3x}{x^2 + 3x + 2}$$

9.
$$\frac{1}{x^2 + 8x + 16} + \frac{2}{x^2 + 4x}$$

Simplify each.

10.
$$\frac{\frac{6}{x^3} + 1}{\frac{4}{x^2}}$$

11.
$$\frac{\frac{3}{x-1} + 7}{4 - \frac{1}{x-1}}$$

12.
$$\frac{\frac{7}{x^4} + \frac{3}{y}}{\frac{2}{y^2} - \frac{1}{x^2}}$$

10.
$$\frac{\frac{6}{x^3} + 1}{\frac{4}{v^2}}$$
 11. $\frac{\frac{3}{x-1} + 7}{4 - \frac{1}{x-1}}$ 12. $\frac{\frac{7}{x^4} + \frac{3}{y}}{\frac{2}{v^2} - \frac{1}{x^2}}$ 13. $\frac{\frac{4}{x+4}}{\frac{3}{x+2} - \frac{2}{x^2+6x+8}}$

Solve each. Check for extraneous solutions.

14.
$$\frac{5}{x-6} - \frac{3}{x+2} = \frac{1}{x^2 - 4x - 12}$$
 15. $\frac{11}{3x} + \frac{4}{x^2} = \frac{1}{3}$

15.
$$\frac{11}{3x} + \frac{4}{x^2} = \frac{1}{3}$$

16.
$$\frac{x}{x+2} = \frac{x+10}{x^2-4}$$

17.
$$\frac{3x}{x-4} + \frac{20}{x^2 - 3x - 4} = \frac{4x}{x+1}$$

18. Each graph is a translation of the function $y = \frac{3}{x}$. Write the equation of each.

19. Sketch each reciprocal function. Show the asymptotes as dashed lines.

a)
$$y = \frac{-10}{x-1} - 5$$

b)
$$y = \frac{0.25}{x+4} + 3$$

$$y = \frac{3x(2x-7)(x+4)(x-9)}{12x(x+4)(x-5)(x+7)}$$

21. State the horizontal asymptote of each rational function, if any.

a)
$$Y = \frac{9x^2 + 8x - 3}{2x + 15}$$

a)
$$Y = \frac{9x^2 + 8x - 3}{2x + 15}$$
 b) $Y = \frac{8x^3 + 3x - 10}{3x^3 + 4x}$ c) $Y = \frac{x^2 + 5x + 6}{2x^3 - 3}$

c)
$$Y = \frac{x^2 + 5x + 6}{2x^3 - 3}$$

22. Graph each rational function showing x and y intercepts, the asymptotes as dashed lines and, the proper behavior around each asymptote.

a)
$$Y = \frac{x+4}{x^2-x-6} = \frac{x+4}{(x-3)(x+2)}$$

b)
$$Y = \frac{3x^2 - 14x - 5}{x^2 - 3x - 4} = \frac{(3x+1)(x-5)}{(x+1)(x-4)}$$