Sec 9-1: Inverse Variation

Inverse Variation: When two quantities have a constant product

2. What does the letter *k* represent?

The variation constant.

1. Three equations for Inverse Variation are:

$$\underline{Y} = \frac{K}{X}$$
, $\underline{K} = XY$, and $\underline{X} = \frac{K}{Y}$

3. For Direct Variation, as one quantity increases the other quantity also increases.

For Inverse Variation, as one quantity

increases the other quantity <u>decrease</u>

How do you tell if a table of values produces and inverse variation relationship?

See if xy is a constant product.

b) Inverse Variation?

Χ	Υ	ΧY
-2	-8	16
3	12	34
5	20	
9	36	

If Yes, k =

If Yes, equation is:

a) Inverse Variation? Yes

	X	Y	XY
	-12	-4	48
	-6	-8	48
	0.5	96	48
	16	3	48
If Yes, $k = 4$			

If Yes, equation is: $\chi \gamma = \psi \beta$ or $\chi = \frac{\psi \delta}{\chi}$

c) Inverse Variation? NO

	,	
X	Υ	×γ
5	12	60
6	14	84
7	16	
8	18	

If Yes, k =

If Yes, equation is:

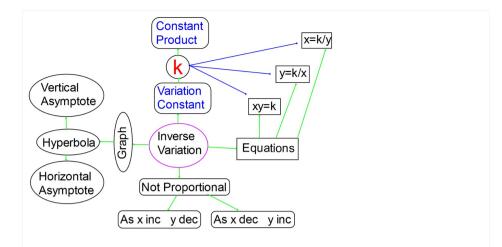
Χ	Υ	1. Does this table show inverse variation?
-4	-36	144
16	9	1929 Find the variation constant.
24	6	144
36	4	3. Write an inverse variation equation. XY = 144
		4. Find the value of x when y is 80 \times 1.8

This ordered pair is from an inverse variation relationship. Find the variation constant.

(5, 8)

Suppose that x and y vary inversely. Write a function to model this inverse variation:

$$x = 30 \text{ when } y = 9$$


For a given amount of Force, mass is inversely proportional to acceleration. You accelerated an 8 pound weight 12 ft/sec².

1. Write an inverse variation equation.

K=96

2. Find the acceleration needed to produce the same force on a 15 pound weight. 2 - 9b

Model each statement with a variation equation:

1. G varies jointly with M and the square of P and inversely with R.

G= KMP2 or K mp2

2. W varies directly with the cube of C and inversely with the product of A and the fourth power of B.

Combined Variation: When one variable is related to two or more variables.

Joint Variation:

A kind of Combined Variation when a variable varies directly with two or more variables.

Examples of Combined Variations

Combined Variation	Equation Form
z varies jointly with x and y .	z = kxy
z varies jointly with x and y and inversely with w .	$z = \frac{kxy}{w}$
z varies directly with x and inversely with the product wy .	$z = \frac{kx}{wy}$

W varies directly with M and inversely with Q. W = 1 when M = 12 and Q = 18.

1. Write a variation equation.

$$W = 15M$$

Write a variation equation.
$$W = \frac{15M}{Q}$$
 |= $\frac{12}{18}$ \rightarrow $\frac{12}{18}$ \rightarrow $\frac{12}{18}$

2. Find W when M = 20 and Q = 48.

$$W = \frac{1.5(20)}{46}$$