

Sec 5-7: Completing the Square

Fill in the blanks.

1.
$$x^2 + 20x + 100 = (x + 10)^2$$

2.
$$x^2 - 4x + \underline{\hspace{1cm}} = (x - \underline{\hspace{1cm}})^2$$

This is called "completing the square"

The constant in the trinomial is half of b, squared:
$$(b/2)^2$$

$$(x-5)^2 = x^2 - 10x + 25$$
The constant in the parentheses is half of b: $b/2$

In general, to complete the square:

$$x^2 + 16x + 64 = (x + 8)^2$$

$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Complete the square for each.

1.
$$x^2 - 12x$$
 = $(x^2 - 12x + 36) = (x^{-6})^2$

2.
$$x^2 + 20x = (x)^2 \longrightarrow 2$$
. $x^2 + 20x + (0)^2 = (x + (0)^2)^2$

3.
$$x^2 - 2x$$
 = $(x)^2 \longrightarrow 3$. $x^2 - 2x + 1$ = $(x - 1)^2$

Solve by completing the square.

$$x^{2} - 14x + 11 = 0$$
Rewrite into: $ax^{2} + bx = c$ Form
$$x^{2} - 14x = -11$$

$$x^{2} + 22x + 121 = 5 + 121$$

$$(x + 11)^{2} = 126$$

$$x + 11 = \pm 126$$

$$x + 11 = \pm$$

Solve
$$X^{2}$$
 + lex - 19 = 0
 X^{2} + lex - 19 = 0
 X^{2} + lex - 19 = 19
 X^{2} + lex + 9 = 19 + 9
 X^{2} + lex + 9 = 19 + 9
 X^{2} + lex + 3 = X^{2} +

Why can't you solve this equation by completing the square, the way it's written.

$$\frac{5x^2 - 8x + 3 = 0}{5}$$

$$ax^2 + bx + c$$

a must be 1

x2-8x+3=0

Therefore, you would have to factor out the 5 or, if it's an equation, divide both sides by 5.

