7. Fill out these two tables by filling in the blanks.

Degree of Polynomial	Name by Degree
0	Constant
1	Linear
2	Quadratic
3	Cubic

# of terms in polyhomial	Name by # of terms	
1	Monomial	
2	Binomial	
3	Trinomial	

8. Is each of the below a polynomial? If not give a reason.

a)
$$y = \frac{3}{7}x^2 + 3x - 14x^4 + 4$$

Yes. All exponents are whole numbers and coefficients are real numbers

b)
$$y = 4x^{-2} + x^3 - \frac{8}{x}$$

No. There is a negative exponent and 8/x really represents 8x⁻¹. This is a Rational Function

c)
$$y = 9\sqrt{x} + 3x^7 - x^{\frac{2}{3}}$$

No. There is a fractional exponent and square root of x really represents $x^{1/2}$. This is a Radical Function.

d)
$$y = 9^x + 10ix^4 - 15$$

No. There is an imaginary coefficient and 9^x means there could be a negative or fractional exponent. This is an Exponential Function.

Shapes of polynomial graphs.

Graph all three of these in a Standard Window:

$$Y_1 = 4x - 2$$

$$Y_2 = 0.25x^3 + x + 1$$

$$Y_3 = 0.1x^5 - 2x - 3$$

What do the graphs have in common?

All these graphs start in the 3rd quadrant and finish in the 1st quadrant.

What do the equations have in common?	Degree	Lead Coeff
$Y_1 = 4x - 2$		4
$Y_2 = 0.25x^3 + x + 1$	3	. 25
$Y_3 = 0.1x^5 - 2x - 3$	5	.01
	000	POS

All Positive Odd polynomials start in the 3rd quadrant and finish in the 1st quadrant.

$$Y_1 = 4x - 2$$

 $Y_2 = 0.25x^3 + x + 1$
 $Y_3 = 0.1x^5 - 2x - 3$

What would happen if they all had a negative leading coefficient?

Odd Functions: Largest exponent is ODD when expanded
This is called the degree of
the function.

Positive Leading Coefficient:

Moves from the third quadrant to the first quadrant.

Like a line with a Positive slope

Negative Leading Coefficient:

Moves from the second quadrant to the fourth quadrant.

Like a line with a Negative slope

Odd Functions

Positive Leading Coefficient:

Moves from the third quadrant to the first quadrant.

Like a line with a Positive slope

Negative Leading Coefficient:

Moves from the second quadrant to the fourth quadrant.

Like a line with a Negative slope

 $Y_1 = x^2$

This is called the END BEHAVIOR

of an ODD function

$$Y_2 = 0.5x^4 + 3x - 1$$

Graph all three of these in a Standard Window:

$$Y_3 = 0.1x^6 - 5x^2 + x$$

What do the equations have in common?	Degree	Lead Coeff
$Y_1 = x^2$	2	(
$Y_2 = 0.5x^4 + 3x - 1$	4	.5
$Y_3 = 0.1x^6 - 5x^2 + x$	6	. (
		Roz

All Positive Even functions behave the same way ... they start in the 2nd quadrant and finish in the 1st quadrant

$$Y_1 = x^2$$

 $Y_2 = 0.5x^4 + 3x - 1$
 $Y_3 = 0.1x^6 - 5x^2 + x$

What would happen if they all had a negative leading coefficient?

Even Functions: Largest exponent is EVEN when expanded

This is called the degree of the function.

Positive Leading Coefficient:

Moves from the second quadrant to the first quadrant.

Like a parabola with a>0

Negative Leading Coefficient:

Moves from the third quadrant to the fourth quadrant.
Like a parabola with a<0

Even Functions

Positive Leading Coefficient:

Moves from the second quadrant to the first quadrant.

Like a parabola with a>0

Negative Leading Coefficient:

Moves from the third quadrant to the fourth quadrant.

Like a parabola with a<0

This is called the END BEHAVIOR of an EVEN function

End-Behavior:

The behavior of the graph on the far left and the far right.

How the value of the function (v) changes as x becomes larger negative LEFT END $x \rightarrow -\infty$ and larger positive RIGHT END. $\chi \rightarrow \infty$

END BEHAVIOR

EVEN Functions:

Positive Leading Coefficient: Negative Leading Coefficient:

$$(\setminus, \nearrow)$$

$$(\setminus, \nearrow)$$
 $(\not \searrow, \setminus)$

as
$$x \to -\infty$$
, $y \to \infty$

as
$$x \to -\infty$$
, $y \to \infty$ as $x \to -\infty$, $y \to -\infty$

as
$$x \to \infty$$
, $y \to \infty$

as
$$x \to \infty$$
, $y \to \infty$ as $x \to \infty$, $y \to -\infty$

END BEHAVIOR

ODD Functions:

Positive Leading Coefficient: Negative Leading Coefficient:

$$(\nearrow, \nearrow)$$
 (\nwarrow, \searrow)

$$(\setminus, \setminus)$$

as
$$x \to -\infty$$
, $y \to -\infty$ as $x \to -\infty$, $y \to \infty$

as
$$x \to -\infty$$
, $y \to \infty$

as
$$x \to \infty$$
, $y \to \infty$

as
$$x \to \infty$$
, $y \to \infty$ as $x \to \infty$, $y \to -\infty$

Give the end behavior of each polynomial.

1.
$$y = 5x^2 - 6x + 11x^4 - 9$$

2.
$$y = 5x(x + 3)^2(x - 7)^3(2 - x)$$

