Sec 5-1: Quadratic Function

A function is a quadratic if the largest exponent is 2.

Standard Form of a Quadratic Function

If the the vertex of a parabola is (4, -7) what is the equation of the Line of Symmetry?

The Line of Symmetry is a Vertical line passing through the Vertex

Use this equation of a quadratic.

$$y = x^2 - 4x + 7$$

The Line of Symmetry is x = 2

What are the coordinates of the vertex?

($\frac{7}{2}$, $\frac{7}{3}$) To find the y-coordinate just replace x in the equation with 2 and find the value of y. $y = (2)^2 - 4(2) + 7 = 3$

Below is a table of values for the graph of a parabola. Plot these points and find 2 other points to complete the picture of this parabola.

X	У	
-2	6	
-1	8	
0	6	
1	0	
2	-10	

Since (-1,8) is going to be the highest point on the graph it is the vertex. The Line of Symmetry is x = -1.

Reflecting (1,0) and (2, -10)over the line of symmetry will give you two more points.

The vertex of a parabola is (2, -8)

If the points (3, -5) and (0,4) are on the parabola find two other points on the parabola.

When you reflect over a vertical line (Line of Symmetry)

the y-coordinate remains the same and the x-coordinate is the same distance away from the line of symmetry but on the other side.

Does each parabola open up or down?

1.
$$y = \frac{87}{2}x^2 + 23x + 115$$

$$x + 115$$
 2. $y = 0.01x^2 + x - 70$

Down

3.
$$y = -57x + \frac{a \text{ is pos}}{12x^2}$$

a is neg
4.
$$y = -x^2 + 106x - 2$$

UP

Down

UP

Does each parabola have a maximum or a minimum?

Minimum

Maximum

Is the vertex of each parabola a Maximum or a Minimum?

1.
$$y = -87x^2 + 23x + 115$$

Opens Down

Vertex is a Max

3.
$$y = -57x + \frac{a \text{ is pos}}{12x^2}$$
Opens UP

Opens of

Vertex is a Min

2.
$$y = 0.01x^2 + x - 70$$

Opens UP

Vertex is a Min

4.
$$y = -x^2 + 106x - 2$$

Opens Down

Vertex is a Max

Real-world parabolas

An object thrown into the air has a path that takes the shape of a parabola (exlcuding air resistance or any other outside forces).

Make a scatter plot on the graphing calculator of this data:

X	у
4.2	55.8
13.5	102.1
16.9	251.6
21.8	585.3
36.9	2517.6

Does this scatter plot appear to be a linear function? No, it appears to be more of a curve.

Find the equation of the linear regression line

y = 79.09x - 773.39

Does this equation appear to be a

good fit? The correlation coefficient is r = 0.92 Since this seems close to 1 it appears to be a good fit, but the data points still seem to look like a curve is a better fit

Press STAT

Arrow to CALC

Is there another option other than LineReg(ax+b) that you would think find an equation that would fit this data better?

5:QuadReg

Graph this quadratic along with the linear regression line and the scatter plot. Which equations appears to be a better fit?

$$y = 2.995x^2 - 47.810x + 203.315$$

When you graph the line and the quadratic together with the data points the quadratic is a much better fit since it touches all five data points and the line doesn't touch any of them. I would select the quadratic equation as a better fit for the data.

If you have the vertex of a parabola you only need one other point to find the equation.

What if you don't have the vertex?

Without the vertex you need 3 noncollinear points to write the equation of a parabola.

Find the equation of the parabola that passes through these three points:

