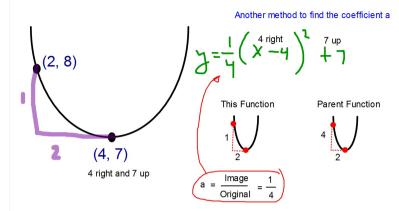

Write the equation of this parabola in Vertex Form.

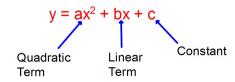

Determine the values of a and k so that both points are on the graph of the quadratic function:

given
$$y = a(x - 6)^2 + k$$

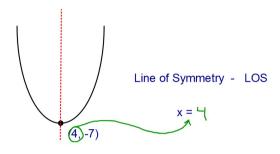
and the points (3,33) & (1, 65)
$$33=a(3-6)^2 + k$$
$$65=a(1-6)^2 + k$$
$$33=9a+k$$
$$65=25a+k$$

Now solve this system of equations for a and k.

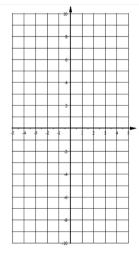
replace a with 2 in one of the two equations and find k.


Write the equation of this parabola in Vertex Form.

Sec 5-1: Quadratic Function


A function is a quadratic if the largest exponent is 2.

Standard Form of a Quadratic Function


If the the vertex of a parabola is (4, -7) what is the equation of the Line of Symmetry?

The Line of Symmetry is a Vertical line passing through the Vertex

Below is a table of values for the graph of a parabola. Plot these points and find 2 other points to complete the picture of this parabola.

Χ	у
-2	6
-1	8
0	6
1	0
2	-10

Use this equation of a quadratic.

$$y = x^2 - 4x + 7$$

The Line of Symmetry is x = 2

What are the coordinates of the vertex?

2, 3) To find the y-coordinate just replace x in the equation with 2 and find the value of y.