Algebra 2

Bellwork Friday, September 19, 2014

$$g(x) = x - 4$$

- Use these functions: $f(x) = x^2 + 3x 5$ g(x) = x 4 $h(x) = \frac{2x 1}{x + 3}$ 1. Find f(g(x)). Simplify as much as possible. 2. Find g(h(x)). Simplify as much as possible.
- 4. Find f(g(7))

- 5. Find f(h(4))
- 6. Write the equation of the line that passes through this pair of points: (-6,3) & (12,15)

7. Write the equation of the line that passes through this pair of points: (4,6) & (4,-10)

Friday, September 19, 2014 Bellwork Algebra 2

$$f(x) = x^2 + 3x - 5$$

$$g(x) = x - 4$$

$$h(x) = \frac{2x-1}{x+3}$$

Use these functions: $f(x) = x^2 + 3x - 5$ g(x) = x - 4 $h(x) = \frac{2x - 1}{x + 3}$ 1. Find f(g(x)). Simplify as much as possible. 2. Find g(h(x)). Simplify as much as possible.

$$(x-4)^{2} + 3(x-4) - 5 = (x^{2}-5x-1)$$

$$(x-4)^{2} + 3(x-4) - 5 = (x^{2}-5x-1)$$

$$(x-4)^{2} + 3(x-4) - 5 = (x^{2}-5x-1)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4) - 4 = 2x-1 - 4(x+3)$$

$$(x-4)^{2} + 3(x-4)^{2} + 3(x-4)^{$$

$$\frac{|2\times -1|}{|X+3|} - \frac{|Y|}{|X+3|} = \frac{2\times -1}{|X+3|} = \frac{2\times -1}{|X+3|}$$

4. Find f(g(7)) = (13) g(7) = 7 - 4 = 3

$$f(3) = (3)^2 + 3(3) - \Gamma$$
 $9+9-5$

5. Find
$$f(h(4)) = \frac{1}{2}$$

$$h(4) = \frac{2(4)-1}{4+3} = \frac{7}{7} = 1$$

6. Write the equation of the line that passes through this pair of points: (-6,3) & (12,15)

$$M = \frac{15-3}{12-6} = \frac{12}{18} = \frac{2}{3}$$

$$\begin{cases} y-3 = \frac{2}{3}(x+6) \\ y-15 = \frac{2}{3}(x-12) \\ or y = \frac{2}{3}x +7 \end{cases}$$

7. Write the equation of the line that passes through this pair of points: (4,6) & (4,-10)