Section 11-4: Arithmetic Series

Series: When the terms of a sequence are added.

Find the sum of this series:

$$1+2+3+...+10+11+12 = 78$$

This is called a FINITE SERIES

has a last term.

An Arithmetic Series is the sum of the terms in an Arithmetic Sequence.

All FINITE Arithmetic Series have a sum.

Find the sum of the first 100 natural numbers:

1+2+3+4+5+6+7+...+97+98+99+100 =

The famous mathematician Karl Friedrich Gauss was 10 years old, when his teacher assigned a problem to the class: find the sum of the first 100 natural numbers, thinking this would keep the class busy for a while.

Gauss, being quite bright, came up with the answer within minutes.

Find the sum of the first 100 natural numbers:

What is the Explicit Formula for this Arithmetic Sequence?

4, 10, 16, 22, 28, ...

$$a_n = 4 + (n-1)6$$

How many terms are there in this Finite Arithmetic Series?

$$106 = 4 + (n-1) 6$$

 $102 = (n-1) 6$
 $17 = (n-1) 6$
 $17 = (n-1) 6$

The sum of a Finite Arithmetic Series:

S_n represents the sum of the first n terms of a finite Arithemtic Series

$$S_n = \frac{n}{2}(a_1 + a_n)$$

n = Number of terms

 a_1 = First term

 a_n = Last Term

Find the sum this Finite Arithemtic Series

Find the sum of this Finite Arithemtic Series

$$21+29+37+45+...+117$$

$$a_{n}=21+(n-i)8$$

$$117=21+(n-i)8$$

$$n=13$$

$$n=13$$

$$= \frac{13}{2}\left(21+117\right)$$

$$= 997$$

Section 11-4

Find the sum of this Finite Arithemtic Sequence

$$N = 15$$

$$S_{15} = \frac{15}{2} \left(74 + -52 \right)$$

$$= 165$$

Summation Notation

$$\sum_{n=1}^{6} 8n - 3$$

"the sum of 8n-3 from 1 to 6"

