Sequence: an ordered list of numbers

Term: Each of the numbers in a sequence

Series: The sum of the terms of a sequence

13 8 21 34

Find the next three terms in each sequence.

Fibonacci Sequence

Find the next three terms in each sequence.

9. J, F, M, A, M, ...

10. f, s, t, f, f, s, s, ... e, n +

Use this sequence:

Explicit Formula:

A formula that expresses the nth term using n (term number).

n is the term or position number

Example:

Use this explicit formula

Write an explicit formula for each sequence:

$$a_n = n^2$$

$$a_n = \lambda^n$$

4.
$$5, 11, 17, 23, 29, ...$$
 $(n-1)$ $5+6(n-1)$

Example: Recursive Formula: a₁ = 9 $a_n = 2(a_{n-1})$

State the first 4 terms of this sequence

$$\frac{9}{a_1} = \frac{18}{a_2} = (a_1)2$$

Recursive Formula: Defines the nth term (a_n) using the previous term(s) (a_{n-1}) and sometimes (a_{n-2})

Write a recursive formula for each sequence:

$$a_1 = 48$$
 $a_n = a_{n-1} - 5$

2. 1134, 378, 126, 42, ...
$$q = \frac{134}{3}$$
 $q = \frac{134}{3}$ $q = \frac{134}{3}$

Sec 11-2: Arithmetic Sequences

Created by adding the same number each time.

The difference between consecutive terms is constant.

d = Common Difference

$$d = 5$$