The sum of a Finite Arithmetic Series:

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Sum of the terms in a Finite Geometric Series

$$S_n = \frac{a_1(1-r^n)}{1-r}$$

Sum of an Infinite Geometric Series

If
$$|r| < 1$$
: $S = \frac{a_1}{1 - r}$

Evaluate each.

3.
$$\sum_{n=1}^{5} 3n^2 + 1$$
 4. $\sum_{n=1}^{40} 4n - 1$

4.
$$\sum_{n=1}^{40} 4n - 1$$

Bellwork Friday, June 6, 2014

Find the sum of each series.

$$2. \ 0.125 + 0.5 + 2 + \dots + 33,554,432$$

3.
$$334,611 + 111,537 + 37,179 + ...$$

5.
$$\sum_{n=1}^{12} 5(3)^n$$

5.
$$\sum_{n=1}^{12} 5(3)^n$$
 6. $\sum_{n=1}^{\infty} 56(0.6)^n$