$$360^{\circ} = 2\pi$$

Which can be simplified

into:
$$180^{\circ} = \pi$$

This relationship produces two conversion factors:

$$\frac{180^{\circ}}{\pi}$$
 From Radian to Lagrage

Sec 13-3: Radian Measure

The angle measure of one full revolution around a circle is 360°

Another unit used to measure angles is called Radians

The angle measure of one full revolution around a circle in radians is 2π

$$\frac{180^{\circ}}{\pi} \qquad \frac{\pi}{180^{\circ}}$$
 Use the above conversion factors to do the following:

1. Convert into radians:

a
$$330^{\circ} \frac{\pi}{180^{\circ}}$$

b.
$$240^{\circ}$$
 , $\frac{\pi}{180^{\circ}}$

a.
$$330^{\circ} \frac{\pi}{180^{\circ}}$$
 b. $240^{\circ} \cdot \frac{\pi}{180^{\circ}}$ c. $135^{\circ} \cdot \frac{\pi}{180^{\circ}}$

$$\frac{4\pi}{3}$$

 $\frac{180\,^\circ}{\pi} \qquad \frac{\pi}{180\,^\circ}$ Use the above conversion factors to do the following:

2. Convert to degrees:

a.
$$\frac{7\pi}{6} \cdot \frac{180^{\circ}}{\pi}$$

b.
$$\frac{11\pi}{15}$$
. $\frac{180^{\circ}}{\pi}$

- c. 12 .
$$\frac{180^{\circ}}{\pi}$$

Radians on the Unit Circle:

Convert To Radians:

Hwk #16

Sec 13-3

Pages 729-730

Problems 1-3, 8-10, 16, 17

Find a positive and a negative coterminal angle for each. Give your answer in radians.

	Pos	Neg
1. $-\frac{3\pi}{4}$	-3T + 8T 4 (ST/4)	$-\frac{3\pi}{4} - \frac{8\pi}{4} = -\frac{11\pi}{4}$
$2. \ \frac{7\pi}{6}$	1 + 276	77-1211 = -51