Write an exponential function $y = ab^x$ for a graph that includes the given points:

(3, 54) and (6, 182.25)

Solve one equation for a then substitute into the other equation to find b.

(82.25)

(82.25)

(82.25)

For each exponential equation state the percent change it models and state if it's an increase or a decrease.

1.
$$y = 225(1.207)^{\times}$$
 2. $y = 1.58(0.8101)^{\times}$ $1. y = 225(1.207)^{\times}$ $1. y = 1.58(0.8101)^{\times}$ $1. y = 225(1.207)^{\times}$ $1. y = 1.58(0.8101)^{\times}$ $1. y = 1.58(0.8101)^{\times}$

Take a small white board, a marker, and a rag.

Find the base of an exponential function for each situation.

1. Increase of 12.1%
$$b = 1.121$$
 $0 + 12.1$

2. Decrease of 0.72% b=
$$0.9928$$
 () () - .72 $\frac{99.28}{2}$

Does each Exponential Function represent Growth or Decay?

1.
$$y = 2875(1.0012)^x$$

2.
$$y = 72.8(0.9918)^x$$

3.
$$y = 4(\frac{57}{61})^x$$

4.
$$y = 100(0.6137)^{-x}$$

5.
$$y = 562(\frac{112}{109})^x$$

Hwk #9

Sec 8-1

Pages 434-436

Problems 9, 16, 17, 23, 35, 37, 38, 49, 50, 56

Due thursday

What would the graph of the function below look like?

$$y = 2^{x+3} + 4$$

Horizontal translation 3 units left Vertical translation 4 units up

What is the horizontal Asymptote of this function?

Transformations of the Parent Function: $y = 2^x$

What would the graph of the function below look like?

$$y = 3.2^{x}$$

Vertical Stretch Factor=3
"3-times taller"

Transformations of the Parent Function: $y = 2^x$

What would the graph of the function below look like?

$$y = -2 \cdot 2^{x}$$

Vertical Stretch Factor =2 and x-axis reflection ("upside down")

Find the equation of the inverse for this function:

$$y = \sqrt{\frac{4x^3 - 7}{8}} + 1$$
2.
3.
4.
5.

Transformations of the Parent Function: $y = 2^x$

What would the graph of the function below look like?

$$y = 2^{-x}$$

Y-axis reflection ("backwards")