Bellwork Friday, March 21, 2014

1. Write the equation of the inverse of the relation below:

$$y = \frac{2 \cdot \sqrt[5]{\frac{4x^2 - 1}{5} + 7} - 8}{11} + 3$$

3. Does each represent exponential Growth or Decay?

a)
$$y = 12,500(0.99879)^{-x}$$

b)
$$y = 0.32(1.0031)^x$$

4. State the % change modeled by this equation and state if it's an increase or a decrease.

$$y = 4800(1.0105)^x$$
 \(\int\). (5)

2. Is the inverse a function? $y = \frac{2x^2 + 3}{x^2 - 3x - 4}$

Graph doesn't pass the horizontal line test.

5. Find the base for the exponential give the following percent change.

22.401% decrease

106-22.401-77.599% D= .77599

6. The population in a city has been decreasing 2.7% each year. The population in 2004 was 142,000. a. Find the population in 1999

b. Find the number of years until the population reaches 100,000. Round to the nearest hundredth.

7. Write each in logarithmic form.

a)
$$12^x = 50$$

$$(4) + 4\sqrt{35}$$

a)
$$12^{x} = 500$$
 b) $.69 = 35$ log $5\infty = x$

8. Write each in exponential form.

a)
$$log_7 =$$

a)
$$\log_{6} X = 2$$

11. Solve.
$$8 \cdot 3^{2x+7} - 2 = 50$$

11. Solve.
$$8 \cdot 3^{2x+7} - 2 = 50$$

$$3^{2x+7} = 6.5$$

$$(103 \cdot 6.9 = 2x+7)$$

$$\log_2(7x+4) - 2\log_2 x = 1$$

$$\log_2 \frac{7x+4}{x^2} =$$

12. Solve.
$$\log_2(7x+4) - 2\log_2 x = 1$$
 $\log_2(7x+4) - 2\log_2 x = 1$ $\log_2(7x+4) - 2\log_2 x = 1$ $\log_2(7x+4) - 2\log_2 x = 1$

2x2-7x-4=0 (5x+1)(x-4)=0

9. Use all three properties of logarithms to expand the following expression:

$$\log_4 \frac{C^2}{B^5 \cdot \sqrt[3]{A}}$$

10. Use all three properties of logarithms to write as a single logarithm:

$$\underbrace{5\log_2 P} - \frac{1}{2}\log_2 Q + 4\log_2 Q$$

13. Find the domain and range of the inverse of this relation:

original D 3/X65, X61

R yey Inverse

D: XEY
R 329651 961