Solve each rational equation.

1.
$$\frac{2}{x^2 + 3x - 10} = \frac{6}{x^2 - 3x + 2}$$

3. Find this sum.
$$\frac{4}{x^2 - 64} - \frac{5x}{x^2 + 11x}$$

2.
$$\frac{2x}{x-2} - \frac{x}{x-6} = \frac{24}{x^2 - 8x + 12}$$

4. Find this quotient.
$$\frac{x + 2x - 2}{6x^4 + 36x}$$

4. Find this quotient.
$$\frac{x^2 + 2x - 24}{6x^4 + 36x^3} \div \frac{x^2 - x - 12}{10x^2 + 20x}$$

5. Simplify.

$$\frac{5x}{y^{3}} + \frac{7}{4x^{2}y}$$
$$\frac{8}{x^{3}y^{2}} - \frac{x}{10y^{4}}$$

6. Does each table represent Direct Variation, Inverse Variation, or neither? If there is a variation relationship write a variation equation and find the value of xwhen y = 70.

Α	
Χ	Υ
16	15
25	9.6
-6	-40
125	1.92
150	1.6

В		
	Χ	Υ
	-5	32
	-2	12.8
	4	-25.6
	18	-115.2
	23	-147.2

EQ:

EQ:

X=

X=