The graph of Inverse Variation.

Χ	у
0.5	16
1	8
2	4
4	2
8	1
10	0.8
16	0.5

xy=&	or $y = \frac{8}{x}$

Use this pair of points. (12,15) & (x,6)

1. These points come from a Direct Variation relationship. Find the value of x.

$$k = \frac{4}{x} = \sqrt{\frac{15}{12} - \frac{6}{x}} x =$$

2. These points come from an Inverse Variation relationship. Find the value of x.

$$XY = XY$$
 $12.15 = x6$
 $30 = x$

The point (9,4) is on the graph of

1. of a Direct Variation relationship. Find the variation constant.

2. of an Inverse Variation relationship. Find the variation constant.

A varies directly with the cube of B.

$$K = \frac{A}{B^3}$$
 or $A = KB^3$

1. A is 36 when B is 2. Find the variation constant.

$$K = \frac{36}{2^3} = \frac{36}{7} = 45$$

2. Model this relationship with a variation equation

A quantity can vary with more than one variable--Combined Variation

Write a variation equation to model each statement.

1. G varies directly with M and N but inversely with B

2. Q varies directly with the square of R and inversely with the product of T and V.

3. M varies directly with E and G but inversely with the cube of A. M = K = 6

Another way to say "varies directly with E and G" is...jointly with E and G.

R varies directly with the square root of M and inversely with the cube of N. R=1.875 when M=36 and N=2.

Find M when R=4 and N=5.

Find M when R=4 and N=5.

$$R = \frac{\text{K.YM}}{N^3}$$

$$V = \frac{2.5 \text{ M}}{125}$$

$$V = \frac{2.5 \text{ M}}{125}$$

$$V = \frac{1.875}{8} = \frac{1.875}{8}$$

How would you say the following relationship:

$$B = \frac{kC^3D}{H^2}$$

B varies directly with the cube of C and D but inversely with the square of H.

5. The volume of a cylinder varies directly with the square of the radius of the Base and the height of the cylinder.

The volume of a cylinder whose base has $(3) = (5)^{2} \times (5)^{2}$ a radius of 5 in and a height of 8 in is 628 (n^3) $\frac{3}{3}$ $\frac{14}{3}$

- Write a variation equation √= ₹ 14 € €
- Find the volume of a cylinder with

Base whose radius is 6 in and height of 10 in.

6. T varies jointly with M and the square of C but inversely with the cube of R. T = 168.75 when C = 5, M = 12 and R = 2. Find the variation constant and write this variation equation.

The Reciprocal Function:

You should now be able to finish Hwk #24

Graph in a standard window these three functions:

$$Y_1 = 0.1$$

$$Y_2 = \frac{5}{4}$$

$$Y_1 = \sqrt{\frac{1}{x}}$$
 $Y_2 = \frac{5}{x}$ $Y_3 = \frac{10}{x}$

Note how they differ.

What happens to the graph as the value of the numerator increases?

graphs are farther from origin

Vertical Stretch factor

Graph in a standard window these three functions:

$$Y_1 = \frac{1}{2}$$

$$Y_2 = \frac{-2}{x}$$

$$Y_3 = \frac{-12}{1}$$

Note how they differ.

What happens to the location of the brances when the numerator is negative?

X-axis Ref