Vertical Asymptotes

Zeros of the Denominator (that aren't also zeros of the numerator)

Y-intercepts of Rational Functions:

replace x with zero.

y-int = ratio of the constants.

X-intercepts of a Rational Function:

Replace y with zero

X-intercepts of Rational Functions are zeros of the Numerator.

Horizontal Asymptotes:

Case 1: Degree of the Numerator > Degree of the Denominator

No HA

Case 2: Degree of the Numerator = Degree of the Denominator

HA: y = ratio of the Leading Coefficients

Case 3: Degree of the Denominator > Degree of the Numerator

HA:
$$y = 0$$

1. Use this function:

$$y = \frac{2x^2 - 18}{x^2 - 2x - 24}$$

2(x+3)(x-3

a. Find the $V\!A$ and $H\!A$, if any. Put these on the graph as dashed lines.

- b. Find the x and y intercepts, if any. Put these on the graph $X 1nT = \frac{1}{3}$
- c. Find the behavior of the graph on each side of each VA.
- d. Sketch the complete graph of the rational function.

2. Use this function:
$$y = \frac{x+1}{x^2 - 3x - 10}$$

a. Find the VA and HA, if any. Put these on the graph as dashed lines.

b. Find the x and y intercepts, if any.

C. Find the behavior of the graph on each side of each VA.

d. Sketch the complete graph of the rational function.

