You can now finish hwk #22

Solve this polynomial equation by graphing.

$$-2x^3 + 4x^2 - x + 5 = 2x - 1$$

Sec 6-4: Solving Polynomial Equations:

- 1. Graphing
 - a. Finding ZerosOne side must equal zero
 - b. Finding Intersections
 Graph the two sides of the equation separately.
- 2. Factoring

Solve this polynomial equation by graphing.

Factor each completely.

1.
$$3x^3 - 3x^2 - 126x$$

2.
$$8x^2 - 2x - 15$$

3.
$$8x^2 - 98$$

2.
$$8x^2 - 2x - 15$$

$$\begin{array}{c|c}
-120/\\
-12 \times 100\\
-2 & 2x & -3\\
4x & 18x^2 & -12x\\
5 & 10x & -15
\end{array}$$

1.
$$3x^3 - 3x^2 - 126x$$

 $3x(x^2 - x - 42)$
 $-\frac{x^2 - 6x}{7x^2 - 42}$
 $-\frac{7}{7x^2 - 42}$
 $-\frac{7}{7x^2 - 42}$
 $-\frac{7}{7x^2 - 42}$
 $-\frac{7}{7x^2 - 42}$

3.
$$8x^{2} - 98$$

$$2(4x^2-49)$$
 $2(2x+7)$

Expand.
$$(x^2 - 5)(x^2 + 3) = \chi^4 - 5\chi^2 + 3\chi^2 - 15$$

Factor.
$$x^4 + 3x^2 - 28$$

Factoring using a Quadratic Pattern

2.
$$x^{9} - 14x^{2} - 32 = 0$$

$$(x^{2}-16)(x^{2}+2)^{-16}$$

Find all solutions by factoring.

Yes, you must make one side equal to zero in order to solve by factoring!

1.
$$8x^{3} + 44x^{2} - 24x = 0$$

$$4x(2x^{2} + 11x - 6)$$

$$4x(2x - 1)(x + 6)$$

of solutions to polynomial equations.

When you include both real and imaginary solutions a polynomial of degree n will have exactly n solutions.

Find all solutions by factoring.

4.
$$5x^5 - 80x = 0$$

