Simplify each.

1.
$$(4 + \sqrt{-49}) - (5 - \sqrt{-9})$$

2.
$$(-2+i)(5-3i)$$

$$-20+5i+6i-3i^2=-7+11i$$

3.
$$(2i)(5i)(3-4i)$$

Two complex numbers are equal if their real parts are equal and their imaginary parts are equal.

The two imaginary numbers below are equal. Find the value of x and y.

$$2x + 3yi & -14 + 15i$$

$$3x = -14$$

$$i = \sqrt{-1} = i$$

$$i^{2} = -1$$

$$i^{3} = -i$$

$$i^{4} = 1$$

Simplify each.

4.
$$(7-2i)^2$$

5.
$$(6+4i)(6-4i)$$

$$36 - 161^{2}$$
 $36 - 16(-1)$
 $36 + 16 = (52)$

a + bi and a - bi are called complex conjugates.

Two binomials that are identical except they have opposite signs in the middle.

Find the product of each pair of conjugates.

1.
$$(7 + 6i)(7 - 6i)$$

2.
$$(3 - i)(3 + i)$$

x + 7 and x - 7 are conjugates. What is the result every time conjugates are multiplied?

$$(x + 7)(x - 7) = \chi^2 - 49$$

In general: $(a + b)(a - b) = 4^2 - 5^2$

What is the result every time complex conjugates are multiplied?

$$(a + bi)(a - bi) = Q^{2} + b^{2}$$

$$(5+3i)(5-3i)$$

$$(3i+1)(3i-1) = 10$$

$$(7i+2)(7i-2) = 53$$

Find all complex solutions:

$$2m^2 + 71 = 7$$

Find the equation of a quadratic, in Standard Form, 1. with the following x-intercepts:

Find the equation of a quadratic, in Standard Form, with the following x-intercepts:

$$\frac{5}{2}$$
 and $\frac{-1}{4}$

Sec 5-8: The Quadratic Formula Equation must be written in the following form:

$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The results of using the Quadratic Fomula represent:

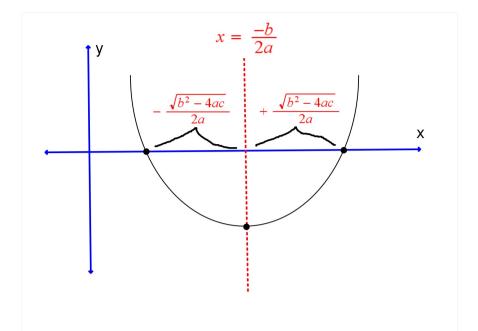
- solutions to the equation
- zeros of the function
- x-intercepts of the graph

Given this equation:
$$x^2 + x + 2 = 0$$

Can you solve this equation by taking square roots? b doesn't equal zero

Can you solve this equation by factoring?

No factors of 2 add to 1


Can you solve this equation by graphing?

Doesn't cross the x-axis

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Can be written as:

$$x = \frac{-b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
LOS Distance from LOS to both

LOS to both x-intercepts.

Solve using the Quadratic Formula. Round to the nearest hundredth when necessary.

1.
$$2x^2 + 7x - 3 = 0$$
 $x = 0.39, -3.89$

2.
$$3x^2 - 59x = 84$$

$$3x^{2}-59x-84=0$$

$$3x^2-59x-84=0$$
 $b^2-4ac=4489$ $x=21,-1.33$

3.
$$x^2 + 2x + 5 = 0$$

Solving Quadratic Equations:

- 1. Factoring. Works only if quadratic is factorable.
- 2. Square Roots. Works only if b=0
- 3. Graphing. Works only if solutions are real #'s
- 4. Quadratic Formula. ALWAYS WORKS!