	Vertex	Vertical Stretch or Shrink and by what factor.	Parabola opens
$y = (x)^2$	(0,0)		UP
$y = (x-3)^2$	(3,0)	1	UP
$y = x^2 + 2$	(0,2)	1	uP
$y = 2(x+1)^2 - 3$	(-1,-3)	STREACH Z	UP
$y = -3(x-2)^2 + 4$	(2,4)	STETCH 3	DOWN
$y = 4(x+7)^2 + 9$	(-7, 9)	STRETCH 4	UP
$y = -0.5(x-3)^2 -1$	(3, -1)	SHRINK 1/2	DUNP
$y = a(x - h)^2 + k$	(h, K)	ON/ STRETCH	a>o up
		1 0 40/K 1 SHRIPK	acu Cumii

vertical position of the first and second "good" points

$$y = a(x-h)^2 + k$$
 Vertex: (h,k)

h: Horizontal translation

x-h: h units right x+h: h units left

k: Vertical translation

+k: k units up -k: k units down

a: If a<0 upsidedown: (x-axis reflection)

If a>1 Vertical stretch factor

If 0<a<1 Vertical shrink factor

Graph each of these parabolas using the coordinates of the vertex, the stretch/shrink factor, and whether it opens up or down.

1.
$$y = 3(x-1)^2 - 7$$

2.
$$y = -2(x+3)^2 + 4$$

