	Vertex	Slope of sides	"V" opens
y = x	(0,0)	土 (UP
y = x-3	(3,0)	± 1	NP
y = x + 2	(0,2)	±1	up
y = 2 x+1 - 3	(=1,-3)	± 2	NP
y = -3 x-2 + 4	(2,4)	± 3	Down
y = 4 x+7 + 9	(-7, 9)	<u>+</u> 4	UP
y = -0.5 x-3 -1	(+3,-1)	+-	down
y = a x - h + k	(h,k)	70	a>0 up
	\' /		aco down

h: Horizontal translation X+h $X-h \Rightarrow Right hunits$ Left hunits Vertex: (h,k)

k: Vertical translation

+K up Kunits -K down Kunits

a: If a<0 upsidedown: (x-axis reflection)

If a>1 Vertical strecth

If 0<a<1 Vertical shrink

 $\pm a = slope of sides of "V"$

A company makes baseballs and footballs. Materials for baseballs cost \$2 each and for footballs \$5 each. The budget for materials is \$1200 a day. The capacity of the plant is 300 balls a day.

Baseballs are solf for \$5 each and footballs for \$30 each.

I = 5b + 30fWrite and solve a system of inequalities that maximizes

the company's income.

rite and solve a system of inequalities that maximizes a company's income.

$$b + f \leq 300$$

$$c + 5f \leq 1200$$

$$c + 5f$$

2b+5f ≤ 1200

$$I = 5b + 30f$$

_	b	f	
	0	0	\$0
;	300	0	\$1500
	0	240	\$7200
1	00	200	\$6500

Max income will occur when the company makes 240 footballs.and 0 baseballs