1. Write a Quadratic Function in Standard Form:

$$y = ax^2 + bx + c$$

- 2. Given the Quadratic Function: $f(x) = 9x^2 4x + 8$
- a. Identify the quadratic term: 9x2
- b. Identify the linear term: -4x
- c. Identify the constant term: +8

5. Use the parabola shown. Draw the Line of Symmetry (also known as the Axis of Symmetry).

- a. State the coordinates of the vertex.
 - (-1,-4)
- b. What kind of line is the Line of Symmetry?

Vertical

- c. Write the equation of the Line of Symmetry. $\chi = -1$
- d. The Line of Symmetry always passes through what point?

Vertex

- e. How is the Line of Symmetry related to the x-coordinate of the vertex?

 The x-coord of the vertex is always the number used in the
- Equation of the LOS.

 f. Is the vertex of this parabola a Maximum or a Minimum?

since the vertex is a low point it is a Minimum

3. What part of the equation for a Quadratic in Standard Form determines if a parabola opens up or down?

the coefficient a

- 4. a. A parabola opens up if a>0
 - b. A parabola opens down if <u>a<0</u>

6. The vertex of a parabola is a Maximum if...

It opens down.....a<0

The vertex of a parabola is a Minimum if...

If it opens up.....a>0

7. Since the y-intercept of any function is found by replacing x with zero, what will the y-intercept of every quadratic function in standard form turn out to be?

it is always the constant C

The vertex of a parabola is the point (-8,2)

What is the equation for the Line of Symmetry?

$$x = -8$$

8. The Line of Symmetry of a parabola is x = 1. Given the points (2, -9) and (4, 7) are on the parabola, use the Line of Symmetry to find two other points on this parabola.

Reflect these two points over the LOS to get:

The parabola $y= 2x^2 - 12x + 1$

has the following Line of Symmetry:

$$x = 3$$

Find the coordinates of the Vertex.

First, the x-coordinate must be 3. Plug this into the equation to find the y-coordinate

$$(3,-17)$$

When you graph a parabola I'll ask for five points.

Use this quadratic: $y = x^2 + 2x - 5$

The Vertex is (-1, -6)

Find four other points on this parabola.

Set up a table to find two more points

Reflect these over the LOS to find two more pts.

Find the equation of the parabola that passes through these three points:

$$(-1,2)$$
 $(2,-6)$ $(4,5)$

Give your answer in Standard Form:

$$y = ax^2 + bx + c$$

How many points define a line?

2 points

How many points define a parabola?

3 noncollinear points

Write a system of equations and use matrices to find a, b, and c.

$$y = ax^2 + bx + c$$

Use
$$(-1,2)$$
 2 = a - b +c

Use
$$(2,-6)$$
 $-6 = 4a + 2b + c$

Use
$$(4,5)$$
 5 = 16a + 4b + c

Find a, b, and c by solving this system of equations using matrices:

$$y = 1.63x^2 - 4.3x - 3.93$$

Use the graphing calculator to perform a Quadratic Regression:

$$(-1,2)$$
 $(2,-6)$ $(4,5)$

$$y = ax^2 + bx + c$$

Students were also shown how to perform a Quadratic Regression using the graphing calculator to get the same equation.

Use a link from my Blog to perform a quadratic regression.

$$(-1,2)$$
 $(2,-6)$ $(4,5)$
y = ax² + bx +c

Students were shown a link on my blog that sends them to a website that has an applet for Quadratic Regression.

Find the equation of the parabola that passes through this set of points:

You must use a regression if there are more than three points.

Given the point (4,11) is on the graph of $y = x^2 + c$

Find the value of c.

Use the point to replace x and y then solve for c.

$$11 = (4)^2 + c$$

$$c = -5$$

Given the points (-3,-20) and (-1,4) are on the graph of $y = ax^2 + c$

Find the values of a and c.

Create a system of equations by using both points:

$$-20 = 9a + c$$

$$4 = a + c$$

solve this system of equations to find both a and c.

$$a = -3$$
 $c = 7$