Section 3-6: System of Equations with Three Variables.

Ordered Triple: $(x,y,z) \longrightarrow (2,5,3)$

x-axis, y-axis, and z-axis defines SPACE (3-D)

What is does the graph of 4x + 6y = 12 look like?

The graph of an equation with three variables

12x + 9y + 6z = 36
A plane in space
$$x-int = \frac{36}{12} = 3$$

$$y-int = \frac{36}{6} = 4$$

$$z-int = \frac{36}{6} = 6$$

A system of linear equations (2 variables) can have how many solutions?

$$y = 3x - 4$$

$$2x + 6y = 21$$

One Solution: Lines intersect at ONE point

No Solution: Lines are parallel

Many Solutions: Equations are the same line

A system of equations in three variables requires THREE EQUATIONS.

A system of equations in three variables can have how many solutions?

2x + 3y + 4z = -1

of solutions possible:

6x - 7y + z = 34

One Solution

-4x + 5y - z = -24

No Solution

Many Solutions

No Solution:

3 parallel planes

All 3 planes don't intersect at the same spot.

Many Solutions:

The 3 planes intersect to form a line:

Solve this system of equations in three variables:

$$x + 3y + 7z = 43$$

Use matrices!

$$4x - 3y + z = 19$$

$$x + 5y - 2z = 13$$

