A farmer wants to plant some acres of soybeans and wheat this season.

- crops. $\searrow + \omega \leq 240$ The farmer has only enough seed for at most 180 acres of wheat. $\omega \leq 180$

Define variables and write four inequalities to model the constraints in this situation.

S = # acres of Soybean W = # acres of Wheat
$$S \ge 0$$
 W ≥ 0 S + W ≤ 240 W ≤ 180

Suppose that the farmer can sell the Soybeans for \$150 an acre and the Wheat for \$200 and acre.

How many acres of each should be planted in order to maximize the income?

Write an equation for income: I = 150S + 200W

The Corner-Point Principle:

Any maximum or minimum value of a linear combination of variables will occur at one of the vertices of the feasible region (shaded region).

See next panel for results

Income Equation: I = 150S + 200W

S	W	150S + 200W
0	0	\$ 0
0	180	\$36,000
60	180	\$45,000
240	0	\$36,000

The farmer should plant 60 acres of Soybean and 180 acres of Wheat to maximize income.