Sec 2-1:

A Relation is: A relation is a set of pairs of

input and output values.

A bunch of points!

There may or may not be any special relationship amongst the points.

Use this relation.

(9, 3) (4, 1) (-6, 12) (4, 6) (-10, 1)

State the Domain and Range of this relation

Domain:

Range:

Domain is also called:

Range is also called:

• All the different x-values

• All the different y-values

Input

Output

Independent Variable

Dependent Variable

State the Domain and Range of this relation:

Domain:

X>-5

Range:

1 < 1

Domain:

{-2,1,3}

Range:

{-4,0,2,3}

(-2,2) (1,-4) (1,3) (3,0)

Is this relation a Function?

NO

A Function is:

A relation that pairs one x-value with exactly one y-value.

Each input produces ONLY ONE output.

Is this relation a function?

Χ	Υ
3	6
-1	4
8	6
9	-1

Is this relation a function?

Χ	Υ
3	5
7	-2
-4	6
3	11
-9	0
	NO

1. Is each of the following statements true or false?

- a) All relations are functions.
- b) All functions are relations.

FALSE

Teut

Vertical-Line Test:

If any vertical line can intersect a relation in more than one spot, then the relation is NOT a function.

