Find all the numbers that fit each description:

1. Exactly 6 units from zero on a number line.

$$x = -6 \text{ or } 6$$

2. More than 4 units from zero on a number line.

$$x > 4$$
 or $x < -4$

3. Less than 7 units from zero on a number line.

$$-7 < x < 7$$

Absolute Value:

The distance from zero on a number line.

Solving Absolute Value Equations:

$$|x| = k$$
 $x = k$ or $x = -k$

Solve.
$$|x + 3| = 7$$

$$x + 3 = 7$$
 or $x + 3 = -7$

$$x = 4$$
 or $x = -10$

Solving Absolute Value equations using a number line.

Solve.
$$|x + 3| = 7$$
Distance Is exactly 7 units

$$|x-2| \ge 6$$
Distance from zero

Is more than 6 units

Further than 6 units from zero

Properties Absolute Value Inequalities

Let *k* represent a positive real number.

$ x \ge k$	is equivalent to	$x \le -k \text{ or } x \ge k.$
$ x \leq k$	is equivalent to	$-k \le x \le k.$

Solve.
$$|x + 1| < 8$$

Solving using a number line.

Solve each Absolute Value equation or inequality.

1.
$$|2x + 6| \le 8$$

See next pages for solutions

2.
$$2|4x - 1| = 18$$

3.
$$|x-4|+5 > 11$$

1.
$$|2x + 6| \le 8$$

2.
$$2|4x-1| = 18$$

$$|4x-1|=-9$$

$$|4x-1|=-9$$

Sol:
$$x=-2$$
 or 2.5 $\chi = -2$.

3.
$$|x-4|+5 > 11$$

$$-5 -5$$

$$|x-4| > 6$$

Solve.

$$|x-3| + 13 = 6$$

- 13 - 13
 $|x-3| = -7$
NO SOL