So Far this semester you should be able to:

From Sec 1-3:

 Solve an equation for a variable and state restrictions

From Sec 1-4:

- Solve inequalities and flip symbol when necessary
- Solve compound inequalities

From Sec 1-5:

Solve absolute value equations and inequalities

From Sec 2-1:

- Give Domain and Range of a relation
- Tell if a relation is a function
- Use function notation

Sec 2-2: Linear Equations

Three forms for the equation of a linear function:

Slope-Intercept Form y = mx + b

Point - Slope Form $y - y_1 = m(x - x_1)$

Standard Form Ax + By = C

Write the equation of the line that passes through these two points:

(-2, -5) and (5, 23)

Slope-Int

PT-Slope $y_2 - y_1 = 23 - 5$ y = 4x + b y = 4 + b y + 5 = 4(x + 2) y = 4 + b y =

Write the equation of the line that passes through this pair of points. Give your answer in Point-Slope Form:

(3, -4) and (1, -1)
$$\frac{-4 + 1}{3 - 1} = \frac{-3}{2}$$

$$y + 1 = \frac{-3}{2} (x - 1) \text{ or } y + 4 = \frac{-3}{2} (x - 3)$$

You can now finish Hwk #3 by doing the problems from Sec 2-2.

You'll need graph paper for #'s 1, 3, 4, and 6.

For #'s 26 & 28 write the answers in both Point-Slope and Slope-Intercept Forms.

Write the equation of the line that passes through this pair of points:

X= 4

Write the equation of the line that passes through this pair of points:

Parallel Lines:

- Same slope
- Different y-intercept

Given the line y = 4x - 7, write an equation of the line that is parallel to this line and passes through the point (3, 10). M=V

Perpendicular Lines:

Slopes are opposite reciprocals (their product = -1)

Given the line y = 2x + 3, write an equation of the line that is perpendicular to this line and passes through the point (-6, 1).

 $M = -\frac{1}{2}$ $M = -\frac{1}{2}(x+6)$

Is each pair of lines parallel, perpendicular, or neither?

1.
$$y = 3x - 7$$

 $y = -3x + 8$

2.
$$y = \frac{2}{3}x - 4$$
$$y = \frac{3}{2}x - 9$$