What do we call this graph? Parabola

What equation gives this graph?

Quadratic $y = ax^2 + bx + c$

> Standard Form of a Quadratic Function

Quadratic Equation: $y = ax^2 + bx + c$

Parabola opens Up if: a>0, Vertex is a Minimum

Parabola opens Down if: a<0 ---- Vertex is a Maximum

Vertex

The Highest or Lowest point on a Parabola. (depending on which way it opens)

Line of Symmetry (LOS)

Fold line that divides to the parabola into two matching halves

VERTICAL line that passes through the middle of the parabola

EQ: x = #

VERTICAL line that passes through the Vertex.

The Vertex is the only point of a Parabola that is ON the LOS

Does each parabola open up or down?

1.
$$y = (-2.5x^2 + 38x + 106)$$

1.
$$y = (-2.5)x^2 + 38x + 106$$
 Dow \approx
2. $f(x) = (0.3)x^2 - 80x - 57$ Up
3. $y = (6)x^2 + 1$ Up

3.
$$y = 61x^2 + 1$$

Every parabola has either a Maximum or a Minimum.

Does each parabola have a Max or a Min?

A.
$$y = (2x^2 + 2x + 1)$$

B.
$$y = (-3)x^2 + 8x - 4$$

Does each parabola have a Maximum or a Minimum?

1.
$$f(x) = 16x^2 - 8x + 11$$
 min

2.
$$y = -1.609x^2 + 13x + 3$$

3.
$$y = -x^2 - 2.4x - 0.75$$

The vertex of a parabola is (15)-8)

What is the equation of the Line of Symmetry?

LOS: Vertical Line through the Vertex

$$X = 15$$

What is the equation for the Line of Symmetry?

Given the Quadratic Function $y = -2x^2 + 12x - 7$

The equation for the Line of Symmetry is x = 3

Find the coordinates of the vertex.

Graphs of a parabolas Exploration Do part 1

The larger the value of a the more narrow the parabola.

The smaller the value of a the wider the parabola.

Part 1 Changing the size of a

In Y_2 try graphing $y = ax^2$ with different values of α , but keeping it positive. Notice what happens to the graph when you change the size of α .

How does the size of α affect the shape of the graph?

Actually the parabolas don't get wider or narrower

they get taller and shorter.....

a is a Vertical Stretch or Vertical Shrink Factor

Since our textbook uses the terms WIDE and NARROW that is how we will refer to it.

If you take the absolute value of a:

The smaller |a| is the wider the parabola

shorter

The larger |a| is the more narrow the parabola taller

13. Place the following quadratics in order from widest to narrowest.

A.
$$y = -4x^2 + 6x - 9$$

B. $y = x^2 - 8x + 17$
C. $y = 0.15x^2 + 3x - 1$
D. $y = -9x^2 - 10x + 5$
E. $y = -0.5x^2 + 4x + 30$

Finish this sentence: The closer the value of *a* is to zero the Wider the parabola.

Finish this sentence: The further the value of α is from zero the Narrower the parabola.

Place these in order from Widest to Narrowest.

A.
$$y = -6x^2$$

B.
$$y = 7x^2$$

C.
$$y = 0.37x^2$$

D.
$$y = -0.41x^2$$

E.
$$y = -x^2$$

Widest

C.
$$y = 0.37x^2$$

D.
$$y = -0.41x^2$$

E.
$$y = -x^2$$

A.
$$y = -6x^2$$

B.
$$y = 7x^2$$

Narrowest

Now do Part 2 of the Exploration

In Y_2 try graphing $y = x^2 + c$ for different values of C, both positive and negative. Notice what happens to the location of the graph when you change the value of C.

How does the value of *c* affect the location of the graph?

The value of c shifts the graph up or down:

+c moves it up c units
-c moves it down c units