1 as an exponent:

For every number a,

$$a^1 = a$$

Any number raised to the first power = itself

If there is no exponent on a number it is assumed to be 1

 $a^{-n} = \frac{1}{a^n}$ any number, a, raised to a negative integer power is the reciprocal of that

integer power is the reciprocal of that number to the positive power.

EXCEPT a can't be zero.

any number,
$$\frac{a}{a}$$
, to the zero power equals 1

EXCEPT: a can't be zero.

Simplify.

1.
$$(4Q^3R)^{-1} = \frac{1}{4Q^3R}$$

$$2. \left(\frac{h^6 k^7}{c^3}\right)^{-1} = \frac{c^3}{h^6 k^7}$$

3.
$$\left(\frac{a^{-4}b^{-2}}{g^5}\right)^{-1} = \left(\frac{1}{9.46295}\right)^{-1}$$

$$\left(\frac{a^{-4}b^{-2}}{g^5}\right)^{-1} = \frac{9^5}{9^5}$$

$$= 4 b^2 9^5$$

Is the value of each expression POSITIVE or NEGATIVE? Write POS or NEG

1.
$$-5^2$$
 NEG

1.
$$-5^2$$
 NEG 2. $(-4)^8$ POS

3.
$$-(-6)^4$$
 NEG 4. -2^3 NEG

$$4. -2^3$$
 NEG

5.
$$(-3)^5$$
 NEG 6. $-(-7)^{POS}$

6.
$$-(-7)^{POS}$$

7.
$$(-6)^{-7}$$
 NEG 8. $(-10)^{-6}$ POS

8.
$$(-10)^{-6}$$
 POS

Evaluate each for P = -3 Q = 6. Leave non-integer answers as a fraction in reduced form.

8.
$$2P^{-2}Q^{2} = \frac{2Q^{2}}{p^{2}}$$

$$= \frac{2(Q)^{2}}{(-3)^{2}}$$

$$= \frac{2 \cdot 36}{9} = 2 \cdot 4$$

$$4^{-2}P^{-1}Q^{2}$$
= $\frac{36}{16 \cdot 3}$
 $\frac{36}{-48}$

Evaluate each for P = -3 Q = 6. Leave non-integer answers as a fraction in reduced form.

6.
$$-5PQ^{-2} = \frac{-5P}{Q^2}$$

$$= \frac{-5(-3)}{\sqrt{2}}$$

$$= \frac{15}{36} = \frac{5}{12}$$

7.
$$\frac{P^{-3}}{Q^{-1}} = \frac{Q}{P^{3}}$$

$$= \frac{6}{(-3)^{5}}$$

$$= \frac{6}{-27}$$

$$= -\frac{2}{9}$$

You can now finish Hwk #8

pages 397-398 problems 17-19, 28, 29, 32, 42-44, 77 Rewrite each problem so that everything has a Negative exponent.

1.
$$\frac{m^2g^5}{c^7} = \frac{c^{-7}}{m^{-2}5^{-5}}$$

1.
$$\frac{m^2g^5}{c^7} = \frac{c^{-7}}{m^{-2}g^{-5}}$$
 2. $8a^6b^{-4} = \frac{b^{-4}}{8^{-6}a^{-6}}$

Skills that you will be using in Sec 8-2 are:

Write each number without any exponents.

1.
$$10^3$$
 [000]

Properties of Exponents in Chapter 8

- Zero and Negative Exponents $5b^{-3}c^{0}$
- Multiplying powers with the same base a^4a^7a
- Raising a power to a power $(m^5)^8$
- Raising a product to a power $(5a^3b^7)^2$
- Dividing powers with the same base $\frac{n^8}{n^2}$
- Raising a quotient to a power $\left(\frac{x^3}{v^7}\right)^4$

Write each number as a power of 10 using positive exponents.

1.
$$10,000 = 10^{4}$$

2.
$$10,000,000 = 10^{7}$$

Write each number as a fraction and without ANY exponents

1.
$$10^{-2} - \frac{1}{10^2} = \frac{1}{100}$$

$$2. \ 10^{-5} = \frac{1}{10^{5}} = \frac{1}{100,000}$$

Write each number as a power of 10 using negative exponents.

1.
$$\frac{1}{10,000} = \frac{1}{10^{4}} = 10^{-7}$$

2.
$$\frac{1}{1,000,000} = \frac{1}{10^{6}} = 10^{-6}$$