Fill in the next number in the right-hand column

		1
2 ⁴	16	2. a c
2 ³	8	olumn
2 ²	4	a column divide by 2.
21	2	

1 as an exponent:

For every number a,

 $a^1 = a$

Any number raised to the first power = itself

Fill in the next number in the right-hand column

 $a^0 = 1$

any number, a, to the zero power equals 1

EXCEPT: a can't be zero. If there is no exponent on a number it is assumed to be 1

Why isn't $0^0 = 1$?

$$0^3 = 0$$
 $3^0 = 1$ $0^2 = 0$ $2^0 = 1$ $0^1 = 0 \dots$ $1^0 = 1 \dots$

by this pattern by this pattern it appears that it appears that $0^0 = 1$

0° should be 0

Since 00 can't be both 0 and 1 00 is undefined.

Fill in the next number in the right-hand column

$$a^{-n} = \frac{1}{a^n}$$

any number, a, raised to a negative integer power is the reciprocal of that number to the positive power.

EXCEPT a can't be zero.

$$\mathbf{Q}^{-5} = \underbrace{\frac{1}{\sqrt{5}}}_{5a} = \underbrace{\frac{5}{a^2}}_{5a}$$

$$\frac{4}{e^{-3}} = \boxed{9 e^3} \quad 7Q^{-5}R^0 = \boxed{\frac{7}{Q^5}}$$

$$\frac{-7x^{-2}}{y^{-1}} = \frac{-7x}{x^{-2}}$$

$$\frac{6b^{-2} + c^{0}}{\sqrt{b^{2}} + 1}$$

$$\frac{3^{-2}m^{-4}n}{\frac{9^{-2}m^{4}}{3^{2}m^{4}}} = \frac{1}{9^{-6}b^{4}} = \frac{1}{-6c^{3}a^{2}b^{4}}$$

$$\frac{10p^{-5}q^{6}}{m^{0}n^{-2}} = \frac{10n^{5}8^{6}}{p^{5}} \qquad \frac{5^{-2}a^{-1}b^{-4}}{4c^{6}d^{-7}}$$

$$= \frac{5^{-2}}{3^{5}} \qquad \frac{1}{3^{7}} \qquad \frac{1}{3^{7}$$