1. Graph this equation with at least 5 points. $y = -2x^2 - 8x - 3$

3. The value of a painting you own is dropping. The value of the painting is a function of how many years you've owned it. At first the painting was worth \$100,000. The price dropped \$1250each year. Write a function rule to model this situation. Define your variables.

EQ:

Variables:

- a. In how many years will the painting be worth \$70,000?
- 4. Use these two functions: $h(c) = c^2 4$ and p(a) = 7 a

$$h(c) = c^2 - 4$$

$$p(a) = 7 - a$$

Find 2h(-3) - 4p(-2)

5. The ordered pairs are from the same Direct Variation relationship. Write a direct variation equation then find the missing value.

(2,5)&(x,16)

6. Use this function: $f(x) = 10x^2 - 4x$

$$f(x) = 10x^2 - 4x$$

Find the Range for this Domain: $\{-5, 0, 5\}$

Range:

7. The amount of spaghetti required for a meal varies directly with the number of people that are served.

v	
# of people served	lbs of Spaghetti
12	9
28	21
48	36
68	51

- a. Find the variation constant including units.
- b. Find amount of spaghetti needed to feed 100 people.
- 8. Graph this equation: $y = \frac{2}{3}x + 1$

Algebra 1

6th hr

Bellwork

Friday, January 8, 2015

1. Graph this equation with at least 5 points.

$$y = -2x^2 - 8x - 3$$

EQ:

3. The value of a painting you own is dropping. The value of the painting is a function of how many years you've owned it. At first the painting was worth \$100,000. The price dropped \$1250each year. Write a function rule to model this situation. Define your variables.

EQ:
$$V = 100,000 - 1250 y$$

variables:
$$V = value of the painting$$
 $Y = the painting$
 $Y = the painting$

a. In how many years will the painting be worth \$70,000?

$$70000 = 100,000 - 1250y$$

$$-30,000 = -1250y$$
4. Use these two functions: $h(c) = c^2 - 4$ and $p(a) = 7 - a$

y = 24 years

and
$$p(a) = 7 - a$$

$$h(-3) = (-3)^{2} - 4 = 9 - 4 = 5$$

$$2 h(-3) = 2(5) = 10$$

$$p(-2) = 7 - (-2) = 7 + 2 = 9$$

$$4 p(-2) = 4(9) = 36$$

5. The ordered pairs are from the same Direct Variation relationship. Write a direct variation equation then find the missing value.

(2,5)&(x,16)

the same Direct Variation relationship. Write a direct variation equation

where
$$\alpha$$
 direct variation eq: $K = \frac{5}{2} = 2.5$
 $X = \frac{$

 $f(x) = 10x^2 - 4x$ 6. Use this function:

Find the Range for this Domain: $\{-5, 0, 5\}$

{0,230,270{

$$f(-5) = 10(-5)^{2} - 4(-5) = 10(25) - 4(-5)$$

$$= 250 + 20 = 270$$

$$f(0) = 10(0)^{2} - 4(0) = 0 - 0 = 0$$

$$f(5) = 10(5)^{2} - 4(5)$$

$$= 10(25) - 4(5)$$

$$= 2502220 = 230$$

7. The amount of spaghetti required for a meal varies directly with the number of people that are served.

anoony with the name	Doi of poopie man
# of people served	lbs of Spaghetti
12	9
28	21
48	36
68	51

X 10c	$K = \frac{X}{X}$	= 9 =	0.75
-------	-------------------	-------	------

a. Find the variation constant including units. 0.75 lbs/person

b. Find amount of spaghetti needed to feed 100 people. $\sim \chi$ (n) pired Var. Eq 3

$$Y = 0.75X = 0.75(100) = 75/bs$$

